112 research outputs found

    InfoScrub: Towards Attribute Privacy by Targeted Obfuscation

    Get PDF
    Personal photos of individuals when shared online, apart from exhibiting a myriad of memorable details, also reveals a wide range of private information and potentially entails privacy risks (e.g., online harassment, tracking). To mitigate such risks, it is crucial to study techniques that allow individuals to limit the private information leaked in visual data. We tackle this problem in a novel image obfuscation framework: to maximize entropy on inferences over targeted privacy attributes, while retaining image fidelity. We approach the problem based on an encoder-decoder style architecture, with two key novelties: (a) introducing a discriminator to perform bi-directional translation simultaneously from multiple unpaired domains; (b) predicting an image interpolation which maximizes uncertainty over a target set of attributes. We find our approach generates obfuscated images faithful to the original input images, and additionally increase uncertainty by 6.2×\times (or up to 0.85 bits) over the non-obfuscated counterparts.Comment: 20 pages, 7 figure

    Robust Proxy: Improving Adversarial Robustness by Robust Proxy Learning

    Full text link
    Recently, it has been widely known that deep neural networks are highly vulnerable and easily broken by adversarial attacks. To mitigate the adversarial vulnerability, many defense algorithms have been proposed. Recently, to improve adversarial robustness, many works try to enhance feature representation by imposing more direct supervision on the discriminative feature. However, existing approaches lack an understanding of learning adversarially robust feature representation. In this paper, we propose a novel training framework called Robust Proxy Learning. In the proposed method, the model explicitly learns robust feature representations with robust proxies. To this end, firstly, we demonstrate that we can generate class-representative robust features by adding class-wise robust perturbations. Then, we use the class representative features as robust proxies. With the class-wise robust features, the model explicitly learns adversarially robust features through the proposed robust proxy learning framework. Through extensive experiments, we verify that we can manually generate robust features, and our proposed learning framework could increase the robustness of the DNNs.Comment: Accepted at IEEE Transactions on Information Forensics and Security (TIFS

    Robust Semi-Supervised Anomaly Detection via Adversarially Learned Continuous Noise Corruption

    Get PDF
    Anomaly detection is the task of recognising novel samples which deviate significantly from pre-established normality. Abnormal classes are not present during training meaning that models must learn effective representations solely across normal class data samples. Deep Autoencoders (AE) have been widely used for anomaly detection tasks, but suffer from overfitting to a null identity function. To address this problem, we implement a training scheme applied to a Denoising Autoencoder (DAE) which introduces an efficient method of producing Adversarially Learned Continuous Noise (ALCN) to maximally globally corrupt the input prior to denoising. Prior methods have applied similar approaches of adversarial training to increase the robustness of DAE, however they exhibit limitations such as slow inference speed reducing their real-world applicability or producing generalised obfuscation which is more trivial to denoise. We show through rigorous evaluation that our ALCN method of regularisation during training improves AUC performance during inference while remaining efficient over both classical, leave-one-out novelty detection tasks with the variations-: 9 (normal) vs. 1 (abnormal) & 1 (normal) vs. 9 (abnormal); MNIST - AUCavg: 0.890 & 0.989, CIFAR-10 - AUCavg: 0.670 & 0.742, in addition to challenging real-world anomaly detection tasks: industrial inspection (MVTEC-AD - AUCavg: 0.780) and plant disease detection (Plant Village - AUC: 0.770) when compared to prior approaches

    Adversarial content manipulation for analyzing and improving model robustness

    Get PDF
    The recent rapid progress in machine learning systems has opened up many real-world applications --- from recommendation engines on web platforms to safety critical systems like autonomous vehicles. A model deployed in the real-world will often encounter inputs far from its training distribution. For example, a self-driving car might come across a black stop sign in the wild. To ensure safe operation, it is vital to quantify the robustness of machine learning models to such out-of-distribution data before releasing them into the real-world. However, the standard paradigm of benchmarking machine learning models with fixed size test sets drawn from the same distribution as the training data is insufficient to identify these corner cases efficiently. In principle, if we could generate all valid variations of an input and measure the model response, we could quantify and guarantee model robustness locally. Yet, doing this with real world data is not scalable. In this thesis, we propose an alternative, using generative models to create synthetic data variations at scale and test robustness of target models to these variations. We explore methods to generate semantic data variations in a controlled fashion across visual and text modalities. We build generative models capable of performing controlled manipulation of data like changing visual context, editing appearance of an object in images or changing writing style of text. Leveraging these generative models we propose tools to study robustness of computer vision systems to input variations and systematically identify failure modes. In the text domain, we deploy these generative models to improve diversity of image captioning systems and perform writing style manipulation to obfuscate private attributes of the user. Our studies quantifying model robustness explore two kinds of input manipulations, model-agnostic and model-targeted. The model-agnostic manipulations leverage human knowledge to choose the kinds of changes without considering the target model being tested. This includes automatically editing images to remove objects not directly relevant to the task and create variations in visual context. Alternatively, in the model-targeted approach the input variations performed are directly adversarially guided by the target model. For example, we adversarially manipulate the appearance of an object in the image to fool an object detector, guided by the gradients of the detector. Using these methods, we measure and improve the robustness of various computer vision systems -- specifically image classification, segmentation, object detection and visual question answering systems -- to semantic input variations.Der schnelle Fortschritt von Methoden des maschinellen Lernens hat viele neue Anwendungen ermöglicht – von Recommender-Systemen bis hin zu sicherheitskritischen Systemen wie autonomen Fahrzeugen. In der realen Welt werden diese Systeme oft mit Eingaben außerhalb der Verteilung der Trainingsdaten konfrontiert. Zum Beispiel könnte ein autonomes Fahrzeug einem schwarzen Stoppschild begegnen. Um sicheren Betrieb zu gewährleisten, ist es entscheidend, die Robustheit dieser Systeme zu quantifizieren, bevor sie in der Praxis eingesetzt werden. Aktuell werden diese Modelle auf festen Eingaben von derselben Verteilung wie die Trainingsdaten evaluiert. Allerdings ist diese Strategie unzureichend, um solche Ausnahmefälle zu identifizieren. Prinzipiell könnte die Robustheit “lokal” bestimmt werden, indem wir alle zulässigen Variationen einer Eingabe generieren und die Ausgabe des Systems überprüfen. Jedoch skaliert dieser Ansatz schlecht zu echten Daten. In dieser Arbeit benutzen wir generative Modelle, um synthetische Variationen von Eingaben zu erstellen und so die Robustheit eines Modells zu überprüfen. Wir erforschen Methoden, die es uns erlauben, kontrolliert semantische Änderungen an Bild- und Textdaten vorzunehmen. Wir lernen generative Modelle, die kontrollierte Manipulation von Daten ermöglichen, zum Beispiel den visuellen Kontext zu ändern, die Erscheinung eines Objekts zu bearbeiten oder den Schreibstil von Text zu ändern. Basierend auf diesen Modellen entwickeln wir neue Methoden, um die Robustheit von Bilderkennungssystemen bezüglich Variationen in den Eingaben zu untersuchen und Fehlverhalten zu identifizieren. Im Gebiet von Textdaten verwenden wir diese Modelle, um die Diversität von sogenannten Automatische Bildbeschriftung-Modellen zu verbessern und Schreibtstil-Manipulation zu erlauben, um private Attribute des Benutzers zu verschleiern. Um die Robustheit von Modellen zu quantifizieren, werden zwei Arten von Eingabemanipulationen untersucht: Modell-agnostische und Modell-spezifische Manipulationen. Modell-agnostische Manipulationen basieren auf menschlichem Wissen, um bestimmte Änderungen auszuwählen, ohne das entsprechende Modell miteinzubeziehen. Dies beinhaltet das Entfernen von für die Aufgabe irrelevanten Objekten aus Bildern oder Variationen des visuellen Kontextes. In dem alternativen Modell-spezifischen Ansatz werden Änderungen vorgenommen, die für das Modell möglichst ungünstig sind. Zum Beispiel ändern wir die Erscheinung eines Objekts um ein Modell der Objekterkennung täuschen. Dies ist durch den Gradienten des Modells möglich. Mithilfe dieser Werkzeuge können wir die Robustheit von Systemen zur Bildklassifizierung oder -segmentierung, Objekterkennung und Visuelle Fragenbeantwortung quantifizieren und verbessern

    On the benefits of defining vicinal distributions in latent space

    Get PDF
    The vicinal risk minimization (VRM) principle is an empirical risk minimization (ERM) variant that replaces Dirac masses with vicinal functions. There is strong numerical and theoretical evidence showing that VRM outperforms ERM in terms of generalization if appropriate vicinal functions are chosen. Mixup Training (MT), a popular choice of vicinal distribution, improves the generalization performance of models by introducing globally linear behavior in between training examples. Apart from generalization, recent works have shown that mixup trained models are relatively robust to input perturbations/corruptions and at the same time are calibrated better than their non-mixup counterparts. In this work, we investigate the benefits of defining these vicinal distributions like mixup in latent space of generative models rather than in input space itself. We propose a new approach - \textit{VarMixup (Variational Mixup)} - to better sample mixup images by using the latent manifold underlying the data. Our empirical studies on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that models trained by performing mixup in the latent manifold learned by VAEs are inherently more robust to various input corruptions/perturbations, are significantly better calibrated, and exhibit more local-linear loss landscapes.Comment: Accepted at Elsevier Pattern Recognition Letters (2021), Best Paper Award at CVPR 2021 Workshop on Adversarial Machine Learning in Real-World Computer Vision (AML-CV), Also accepted at ICLR 2021 Workshops on Robust-Reliable Machine Learning (Oral) and Generalization beyond the training distribution (Abstract
    corecore