485 research outputs found

    Medical image registration using unsupervised deep neural network: A scoping literature review

    Full text link
    In medicine, image registration is vital in image-guided interventions and other clinical applications. However, it is a difficult subject to be addressed which by the advent of machine learning, there have been considerable progress in algorithmic performance has recently been achieved for medical image registration in this area. The implementation of deep neural networks provides an opportunity for some medical applications such as conducting image registration in less time with high accuracy, playing a key role in countering tumors during the operation. The current study presents a comprehensive scoping review on the state-of-the-art literature of medical image registration studies based on unsupervised deep neural networks is conducted, encompassing all the related studies published in this field to this date. Here, we have tried to summarize the latest developments and applications of unsupervised deep learning-based registration methods in the medical field. Fundamental and main concepts, techniques, statistical analysis from different viewpoints, novelties, and future directions are elaborately discussed and conveyed in the current comprehensive scoping review. Besides, this review hopes to help those active readers, who are riveted by this field, achieve deep insight into this exciting field

    An Unsupervised Learning Model for Deformable Medical Image Registration

    Full text link
    We present a fast learning-based algorithm for deformable, pairwise 3D medical image registration. Current registration methods optimize an objective function independently for each pair of images, which can be time-consuming for large data. We define registration as a parametric function, and optimize its parameters given a set of images from a collection of interest. Given a new pair of scans, we can quickly compute a registration field by directly evaluating the function using the learned parameters. We model this function using a convolutional neural network (CNN), and use a spatial transform layer to reconstruct one image from another while imposing smoothness constraints on the registration field. The proposed method does not require supervised information such as ground truth registration fields or anatomical landmarks. We demonstrate registration accuracy comparable to state-of-the-art 3D image registration, while operating orders of magnitude faster in practice. Our method promises to significantly speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is available at https://github.com/balakg/voxelmorph .Comment: 9 pages, in CVPR 201

    Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions

    Full text link
    Medical Image Analysis is currently experiencing a paradigm shift due to Deep Learning. This technology has recently attracted so much interest of the Medical Imaging community that it led to a specialized conference in `Medical Imaging with Deep Learning' in the year 2018. This article surveys the recent developments in this direction, and provides a critical review of the related major aspects. We organize the reviewed literature according to the underlying Pattern Recognition tasks, and further sub-categorize it following a taxonomy based on human anatomy. This article does not assume prior knowledge of Deep Learning and makes a significant contribution in explaining the core Deep Learning concepts to the non-experts in the Medical community. Unique to this study is the Computer Vision/Machine Learning perspective taken on the advances of Deep Learning in Medical Imaging. This enables us to single out `lack of appropriately annotated large-scale datasets' as the core challenge (among other challenges) in this research direction. We draw on the insights from the sister research fields of Computer Vision, Pattern Recognition and Machine Learning etc.; where the techniques of dealing with such challenges have already matured, to provide promising directions for the Medical Imaging community to fully harness Deep Learning in the future
    • …
    corecore