33,424 research outputs found

    Adversarial Out-domain Examples for Generative Models

    Full text link
    Deep generative models are rapidly becoming a common tool for researchers and developers. However, as exhaustively shown for the family of discriminative models, the test-time inference of deep neural networks cannot be fully controlled and erroneous behaviors can be induced by an attacker. In the present work, we show how a malicious user can force a pre-trained generator to reproduce arbitrary data instances by feeding it suitable adversarial inputs. Moreover, we show that these adversarial latent vectors can be shaped so as to be statistically indistinguishable from the set of genuine inputs. The proposed attack technique is evaluated with respect to various GAN images generators using different architectures, training processes and for both conditional and not-conditional setups.Comment: accepted in proceedings of the Workshop on Machine Learning for Cyber-Crime Investigation and Cybersecurit

    Adversarial Example Detection and Classification With Asymmetrical Adversarial Training

    Full text link
    The vulnerabilities of deep neural networks against adversarial examples have become a significant concern for deploying these models in sensitive domains. Devising a definitive defense against such attacks is proven to be challenging, and the methods relying on detecting adversarial samples are only valid when the attacker is oblivious to the detection mechanism. In this paper we first present an adversarial example detection method that provides performance guarantee to norm constrained adversaries. The method is based on the idea of training adversarial robust subspace detectors using asymmetrical adversarial training (AAT). The novel AAT objective presents a minimax problem similar to that of GANs; it has the same convergence property, and consequently supports the learning of class conditional distributions. We first demonstrate that the minimax problem could be reasonably solved by PGD attack, and then use the learned class conditional generative models to define generative detection/classification models that are both robust and more interpretable. We provide comprehensive evaluations of the above methods, and demonstrate their competitive performances and compelling properties on adversarial detection and robust classification problems.Comment: ICLR 202

    Generating Adversarial Examples with Adversarial Networks

    Full text link
    Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.Comment: Accepted to IJCAI201
    • …
    corecore