965 research outputs found

    Adversarial vulnerability bounds for Gaussian process classification

    Get PDF
    Protecting ML classifiers from adversarial examples is crucial. We propose that the main threat is an attacker perturbing a confidently classified input to produce a confident misclassification. We consider in this paper the L0 attack in which a small number of inputs can be perturbed by the attacker at test-time. To quantify the risk of this form of attack we have devised a formal guarantee in the form of an adversarial bound (AB) for a binary, Gaussian process classifier using the EQ kernel. This bound holds for the entire input domain, bounding the potential of any future adversarial attack to cause a confident misclassification. We explore how to extend to other kernels and investigate how to maximise the bound by altering the classifier (for example by using sparse approximations). We test the bound using a variety of datasets and show that it produces relevant and practical bounds for many of them

    Wasserstein Introspective Neural Networks

    Full text link
    We present Wasserstein introspective neural networks (WINN) that are both a generator and a discriminator within a single model. WINN provides a significant improvement over the recent introspective neural networks (INN) method by enhancing INN's generative modeling capability. WINN has three interesting properties: (1) A mathematical connection between the formulation of the INN algorithm and that of Wasserstein generative adversarial networks (WGAN) is made. (2) The explicit adoption of the Wasserstein distance into INN results in a large enhancement to INN, achieving compelling results even with a single classifier --- e.g., providing nearly a 20 times reduction in model size over INN for unsupervised generative modeling. (3) When applied to supervised classification, WINN also gives rise to improved robustness against adversarial examples in terms of the error reduction. In the experiments, we report encouraging results on unsupervised learning problems including texture, face, and object modeling, as well as a supervised classification task against adversarial attacks.Comment: Accepted to CVPR 2018 (Oral

    Generating Artificial Data for Private Deep Learning

    Full text link
    In this paper, we propose generating artificial data that retain statistical properties of real data as the means of providing privacy with respect to the original dataset. We use generative adversarial network to draw privacy-preserving artificial data samples and derive an empirical method to assess the risk of information disclosure in a differential-privacy-like way. Our experiments show that we are able to generate artificial data of high quality and successfully train and validate machine learning models on this data while limiting potential privacy loss.Comment: Privacy-Enhancing Artificial Intelligence and Language Technologies, AAAI Spring Symposium Series, 201
    • 

    corecore