148 research outputs found

    A Survey of Multi-task Learning in Natural Language Processing: Regarding Task Relatedness and Training Methods

    Full text link
    Multi-task learning (MTL) has become increasingly popular in natural language processing (NLP) because it improves the performance of related tasks by exploiting their commonalities and differences. Nevertheless, it is still not understood very well how multi-task learning can be implemented based on the relatedness of training tasks. In this survey, we review recent advances of multi-task learning methods in NLP, with the aim of summarizing them into two general multi-task training methods based on their task relatedness: (i) joint training and (ii) multi-step training. We present examples in various NLP downstream applications, summarize the task relationships and discuss future directions of this promising topic.Comment: Accepted to EACL 2023 as regular long pape

    GL-CLeF: A Global-Local Contrastive Learning Framework for Cross-lingual Spoken Language Understanding

    Full text link
    Due to high data demands of current methods, attention to zero-shot cross-lingual spoken language understanding (SLU) has grown, as such approaches greatly reduce human annotation effort. However, existing models solely rely on shared parameters, which can only perform implicit alignment across languages. We present Global--Local Contrastive Learning Framework (GL-CLeF) to address this shortcoming. Specifically, we employ contrastive learning, leveraging bilingual dictionaries to construct multilingual views of the same utterance, then encourage their representations to be more similar than negative example pairs, which achieves to explicitly aligned representations of similar sentences across languages. In addition, a key step in GL-CLeF is a proposed Local and Global component, which achieves a fine-grained cross-lingual transfer (i.e., sentence-level Local intent transfer, token-level Local slot transfer, and semantic-level Global transfer across intent and slot). Experiments on MultiATIS++ show that GL-CLeF achieves the best performance and successfully pulls representations of similar sentences across languages closer.Comment: Accepted at ACL2022 Main Conferenc

    Robustification of Multilingual Language Models to Real-world Noise with Robust Contrastive Pretraining

    Full text link
    Advances in neural modeling have achieved state-of-the-art (SOTA) results on public natural language processing (NLP) benchmarks, at times surpassing human performance. However, there is a gap between public benchmarks and real-world applications where noise such as typos or grammatical mistakes is abundant, resulting in degraded performance. Unfortunately, works that assess the robustness of neural models on noisy data and suggest improvements are limited to the English language. Upon analyzing noise in different languages, we observe that noise types vary across languages and thus require their own investigation. Thus, to benchmark the performance of pretrained multilingual models, we construct noisy datasets covering five languages and four NLP tasks. We see a gap in performance between clean and noisy data. After investigating ways to boost the zero-shot cross-lingual robustness of multilingual pretrained models, we propose Robust Contrastive Pretraining (RCP). RCP combines data augmentation with a contrastive loss term at the pretraining stage and achieves large improvements on noisy (& original test data) across two sentence-level classification (+3.2%) and two sequence-labeling (+10 F1-score) multilingual tasks
    corecore