721 research outputs found

    Deep attentive video summarization with distribution consistency learning

    Get PDF
    This article studies supervised video summarization by formulating it into a sequence-to-sequence learning framework, in which the input and output are sequences of original video frames and their predicted importance scores, respectively. Two critical issues are addressed in this article: short-term contextual attention insufficiency and distribution inconsistency. The former lies in the insufficiency of capturing the short-term contextual attention information within the video sequence itself since the existing approaches focus a lot on the long-term encoder-decoder attention. The latter refers to the distributions of predicted importance score sequence and the ground-truth sequence is inconsistent, which may lead to a suboptimal solution. To better mitigate the first issue, we incorporate a self-attention mechanism in the encoder to highlight the important keyframes in a short-term context. The proposed approach alongside the encoder-decoder attention constitutes our deep attentive models for video summarization. For the second one, we propose a distribution consistency learning method by employing a simple yet effective regularization loss term, which seeks a consistent distribution for the two sequences. Our final approach is dubbed as Attentive and Distribution consistent video Summarization (ADSum). Extensive experiments on benchmark data sets demonstrate the superiority of the proposed ADSum approach against state-of-the-art approaches

    Dilated Temporal Relational Adversarial Network for Generic Video Summarization

    Get PDF
    The large amount of videos popping up every day, make it more and more critical that key information within videos can be extracted and understood in a very short time. Video summarization, the task of finding the smallest subset of frames, which still conveys the whole story of a given video, is thus of great significance to improve efficiency of video understanding. We propose a novel Dilated Temporal Relational Generative Adversarial Network (DTR-GAN) to achieve frame-level video summarization. Given a video, it selects the set of key frames, which contain the most meaningful and compact information. Specifically, DTR-GAN learns a dilated temporal relational generator and a discriminator with three-player loss in an adversarial manner. A new dilated temporal relation (DTR) unit is introduced to enhance temporal representation capturing. The generator uses this unit to effectively exploit global multi-scale temporal context to select key frames and to complement the commonly used Bi-LSTM. To ensure that summaries capture enough key video representation from a global perspective rather than a trivial randomly shorten sequence, we present a discriminator that learns to enforce both the information completeness and compactness of summaries via a three-player loss. The loss includes the generated summary loss, the random summary loss, and the real summary (ground-truth) loss, which play important roles for better regularizing the learned model to obtain useful summaries. Comprehensive experiments on three public datasets show the effectiveness of the proposed approach

    Query and Output: Generating Words by Querying Distributed Word Representations for Paraphrase Generation

    Full text link
    Most recent approaches use the sequence-to-sequence model for paraphrase generation. The existing sequence-to-sequence model tends to memorize the words and the patterns in the training dataset instead of learning the meaning of the words. Therefore, the generated sentences are often grammatically correct but semantically improper. In this work, we introduce a novel model based on the encoder-decoder framework, called Word Embedding Attention Network (WEAN). Our proposed model generates the words by querying distributed word representations (i.e. neural word embeddings), hoping to capturing the meaning of the according words. Following previous work, we evaluate our model on two paraphrase-oriented tasks, namely text simplification and short text abstractive summarization. Experimental results show that our model outperforms the sequence-to-sequence baseline by the BLEU score of 6.3 and 5.5 on two English text simplification datasets, and the ROUGE-2 F1 score of 5.7 on a Chinese summarization dataset. Moreover, our model achieves state-of-the-art performances on these three benchmark datasets.Comment: arXiv admin note: text overlap with arXiv:1710.0231
    • …
    corecore