4,049 research outputs found

    GUIDE FOR THE COLLECTION OF INSTRUSION DATA FOR MALWARE ANALYSIS AND DETECTION IN THE BUILD AND DEPLOYMENT PHASE

    Get PDF
    During the COVID-19 pandemic, when most businesses were not equipped for remote work and cloud computing, we saw a significant surge in ransomware attacks. This study aims to utilize machine learning and artificial intelligence to prevent known and unknown malware threats from being exploited by threat actors when developers build and deploy applications to the cloud. This study demonstrated an experimental quantitative research design using Aqua. The experiment\u27s sample is a Docker image. Aqua checked the Docker image for malware, sensitive data, Critical/High vulnerabilities, misconfiguration, and OSS license. The data collection approach is experimental. Our analysis of the experiment demonstrated how unapproved images were prevented from running anywhere in our environment based on known vulnerabilities, embedded secrets, OSS licensing, dynamic threat analysis, and secure image configuration. In addition to the experiment, the forensic data collected in the build and deployment phase are exploitable vulnerability, Critical/High Vulnerability Score, Misconfiguration, Sensitive Data, and Root User (Super User). Since Aqua generates a detailed audit record for every event during risk assessment and runtime, we viewed two events on the Audit page for our experiment. One of the events caused an alert due to two failed controls (Vulnerability Score, Super User), and the other was a successful event meaning that the image is secure to deploy in the production environment. The primary finding for our study is the forensic data associated with the two events on the Audit page in Aqua. In addition, Aqua validated our security controls and runtime policies based on the forensic data with both events on the Audit page. Finally, the study’s conclusions will mitigate the likelihood that organizations will fall victim to ransomware by mitigating and preventing the total damage caused by a malware attack

    Security and Online learning: to protect or prohibit

    Get PDF
    The rapid development of online learning is opening up many new learning opportunities. Yet, with this increased potential come a myriad of risks. Usable security systems are essential as poor usability in security can result in excluding intended users while allowing sensitive data to be released to unacceptable recipients. This chapter presents findings concerned with usability for two security issues: authentication mechanisms and privacy. Usability issues such as memorability, feedback, guidance, context of use and concepts of information ownership are reviewed within various environments. This chapter also reviews the roots of these usability difficulties in the culture clash between the non-user-oriented perspective of security and the information exchange culture of the education domain. Finally an account is provided of how future systems can be developed which maintain security and yet are still usable

    Transdisciplinary AI Observatory -- Retrospective Analyses and Future-Oriented Contradistinctions

    Get PDF
    In the last years, AI safety gained international recognition in the light of heterogeneous safety-critical and ethical issues that risk overshadowing the broad beneficial impacts of AI. In this context, the implementation of AI observatory endeavors represents one key research direction. This paper motivates the need for an inherently transdisciplinary AI observatory approach integrating diverse retrospective and counterfactual views. We delineate aims and limitations while providing hands-on-advice utilizing concrete practical examples. Distinguishing between unintentionally and intentionally triggered AI risks with diverse socio-psycho-technological impacts, we exemplify a retrospective descriptive analysis followed by a retrospective counterfactual risk analysis. Building on these AI observatory tools, we present near-term transdisciplinary guidelines for AI safety. As further contribution, we discuss differentiated and tailored long-term directions through the lens of two disparate modern AI safety paradigms. For simplicity, we refer to these two different paradigms with the terms artificial stupidity (AS) and eternal creativity (EC) respectively. While both AS and EC acknowledge the need for a hybrid cognitive-affective approach to AI safety and overlap with regard to many short-term considerations, they differ fundamentally in the nature of multiple envisaged long-term solution patterns. By compiling relevant underlying contradistinctions, we aim to provide future-oriented incentives for constructive dialectics in practical and theoretical AI safety research
    corecore