30,094 research outputs found

    Online Importance Weight Aware Updates

    Full text link
    An importance weight quantifies the relative importance of one example over another, coming up in applications of boosting, asymmetric classification costs, reductions, and active learning. The standard approach for dealing with importance weights in gradient descent is via multiplication of the gradient. We first demonstrate the problems of this approach when importance weights are large, and argue in favor of more sophisticated ways for dealing with them. We then develop an approach which enjoys an invariance property: that updating twice with importance weight hh is equivalent to updating once with importance weight 2h2h. For many important losses this has a closed form update which satisfies standard regret guarantees when all examples have h=1h=1. We also briefly discuss two other reasonable approaches for handling large importance weights. Empirically, these approaches yield substantially superior prediction with similar computational performance while reducing the sensitivity of the algorithm to the exact setting of the learning rate. We apply these to online active learning yielding an extraordinarily fast active learning algorithm that works even in the presence of adversarial noise

    The Effects of JPEG and JPEG2000 Compression on Attacks using Adversarial Examples

    Full text link
    Adversarial examples are known to have a negative effect on the performance of classifiers which have otherwise good performance on undisturbed images. These examples are generated by adding non-random noise to the testing samples in order to make classifier misclassify the given data. Adversarial attacks use these intentionally generated examples and they pose a security risk to the machine learning based systems. To be immune to such attacks, it is desirable to have a pre-processing mechanism which removes these effects causing misclassification while keeping the content of the image. JPEG and JPEG2000 are well-known image compression techniques which suppress the high-frequency content taking the human visual system into account. JPEG has been also shown to be an effective method for reducing adversarial noise. In this paper, we propose applying JPEG2000 compression as an alternative and systematically compare the classification performance of adversarial images compressed using JPEG and JPEG2000 at different target PSNR values and maximum compression levels. Our experiments show that JPEG2000 is more effective in reducing adversarial noise as it allows higher compression rates with less distortion and it does not introduce blocking artifacts
    • …
    corecore