30,434 research outputs found

    AAANE: Attention-based Adversarial Autoencoder for Multi-scale Network Embedding

    Full text link
    Network embedding represents nodes in a continuous vector space and preserves structure information from the Network. Existing methods usually adopt a "one-size-fits-all" approach when concerning multi-scale structure information, such as first- and second-order proximity of nodes, ignoring the fact that different scales play different roles in the embedding learning. In this paper, we propose an Attention-based Adversarial Autoencoder Network Embedding(AAANE) framework, which promotes the collaboration of different scales and lets them vote for robust representations. The proposed AAANE consists of two components: 1) Attention-based autoencoder effectively capture the highly non-linear network structure, which can de-emphasize irrelevant scales during training. 2) An adversarial regularization guides the autoencoder learn robust representations by matching the posterior distribution of the latent embeddings to given prior distribution. This is the first attempt to introduce attention mechanisms to multi-scale network embedding. Experimental results on real-world networks show that our learned attention parameters are different for every network and the proposed approach outperforms existing state-of-the-art approaches for network embedding.Comment: 8 pages, 5 figure

    Adversarial Deep Network Embedding for Cross-network Node Classification

    Full text link
    In this paper, the task of cross-network node classification, which leverages the abundant labeled nodes from a source network to help classify unlabeled nodes in a target network, is studied. The existing domain adaptation algorithms generally fail to model the network structural information, and the current network embedding models mainly focus on single-network applications. Thus, both of them cannot be directly applied to solve the cross-network node classification problem. This motivates us to propose an adversarial cross-network deep network embedding (ACDNE) model to integrate adversarial domain adaptation with deep network embedding so as to learn network-invariant node representations that can also well preserve the network structural information. In ACDNE, the deep network embedding module utilizes two feature extractors to jointly preserve attributed affinity and topological proximities between nodes. In addition, a node classifier is incorporated to make node representations label-discriminative. Moreover, an adversarial domain adaptation technique is employed to make node representations network-invariant. Extensive experimental results demonstrate that the proposed ACDNE model achieves the state-of-the-art performance in cross-network node classification
    • …
    corecore