10 research outputs found

    Building Up Recommender Systems By Deep Learning For Cognitive Services

    Full text link
    Cognitive services provide artificial intelligence (AI) technology for application developers, who are not required to be experts on machine learning. Cognitive services are presented as an integrated service platform where end users bring abilities such as seeing, hearing, speaking, searching, user profiling, etc. to their own applications under development via simple API calls. As one of the above abilities, recommender systems serve as an indispensable building brick, especially when it comes to the information retrieval functionality in the cognitive service platform. This thesis focuses on the novel recommendation algorithms that are able to improve on recommendation quality measured by accuracy metrics, e.g., precision and recall, with advanced deep learning techniques. Recent deep learning-based recommendation models have been proved to have state-ofthe-art recommendation quality in a host of recommendation scenarios, such as rating prediction tasks, top-N ranking tasks, sequential recommendation, etc. Many of them only leverage the existing information acquired from users’ past behaviours to model them and make one or a set of predictions on the users’ next choice. Such information is normally sparse so that an accurate user behaviour model is often difficult to obtain even with deep learning. To overcome this issue, we invent various adversarial techniques and apply them to deep learning recommendation models in different scenarios. Some of these techniques involve generative models to address data sparsity and some improve user behaviour modelling by introducing an adversarial opponent in model training. We empirically show the effectiveness of our novel techniques and the enhancement achieved over existing models via thorough experiments and ablation studies on widely adopted recommendation datasets. The contributions in this thesis are as follows: 1. Propose the adversarial collaborative auto-encoder model for top-N recommendation; 2. Propose a novel deep domain adaptation cross-domain recommendation model for rating prediction tasks via transfer learning; 3. Propose a novel adversarial noise layer for convolutional neural networks and a convolutional generative adversarial model for top-N recommendation

    Machine Learning Models for Educational Platforms

    Get PDF
    Scaling up education online and onlife is presenting numerous key challenges, such as hardly manageable classes, overwhelming content alternatives, and academic dishonesty while interacting remotely. However, thanks to the wider availability of learning-related data and increasingly higher performance computing, Artificial Intelligence has the potential to turn such challenges into an unparalleled opportunity. One of its sub-fields, namely Machine Learning, is enabling machines to receive data and learn for themselves, without being programmed with rules. Bringing this intelligent support to education at large scale has a number of advantages, such as avoiding manual error-prone tasks and reducing the chance that learners do any misconduct. Planning, collecting, developing, and predicting become essential steps to make it concrete into real-world education. This thesis deals with the design, implementation, and evaluation of Machine Learning models in the context of online educational platforms deployed at large scale. Constructing and assessing the performance of intelligent models is a crucial step towards increasing reliability and convenience of such an educational medium. The contributions result in large data sets and high-performing models that capitalize on Natural Language Processing, Human Behavior Mining, and Machine Perception. The model decisions aim to support stakeholders over the instructional pipeline, specifically on content categorization, content recommendation, learners’ identity verification, and learners’ sentiment analysis. Past research in this field often relied on statistical processes hardly applicable at large scale. Through our studies, we explore opportunities and challenges introduced by Machine Learning for the above goals, a relevant and timely topic in literature. Supported by extensive experiments, our work reveals a clear opportunity in combining human and machine sensing for researchers interested in online education. Our findings illustrate the feasibility of designing and assessing Machine Learning models for categorization, recommendation, authentication, and sentiment prediction in this research area. Our results provide guidelines on model motivation, data collection, model design, and analysis techniques concerning the above applicative scenarios. Researchers can use our findings to improve data collection on educational platforms, to reduce bias in data and models, to increase model effectiveness, and to increase the reliability of their models, among others. We expect that this thesis can support the adoption of Machine Learning models in educational platforms even more, strengthening the role of data as a precious asset. The thesis outputs are publicly available at https://www.mirkomarras.com

    Neural Methods for Effective, Efficient, and Exposure-Aware Information Retrieval

    Get PDF
    Neural networks with deep architectures have demonstrated significant performance improvements in computer vision, speech recognition, and natural language processing. The challenges in information retrieval (IR), however, are different from these other application areas. A common form of IR involves ranking of documents--or short passages--in response to keyword-based queries. Effective IR systems must deal with query-document vocabulary mismatch problem, by modeling relationships between different query and document terms and how they indicate relevance. Models should also consider lexical matches when the query contains rare terms--such as a person's name or a product model number--not seen during training, and to avoid retrieving semantically related but irrelevant results. In many real-life IR tasks, the retrieval involves extremely large collections--such as the document index of a commercial Web search engine--containing billions of documents. Efficient IR methods should take advantage of specialized IR data structures, such as inverted index, to efficiently retrieve from large collections. Given an information need, the IR system also mediates how much exposure an information artifact receives by deciding whether it should be displayed, and where it should be positioned, among other results. Exposure-aware IR systems may optimize for additional objectives, besides relevance, such as parity of exposure for retrieved items and content publishers. In this thesis, we present novel neural architectures and methods motivated by the specific needs and challenges of IR tasks.Comment: PhD thesis, Univ College London (2020

    Uncertainty in Artificial Intelligence: Proceedings of the Thirty-Fourth Conference

    Get PDF

    AVATAR - Machine Learning Pipeline Evaluation Using Surrogate Model

    Get PDF
    © 2020, The Author(s). The evaluation of machine learning (ML) pipelines is essential during automatic ML pipeline composition and optimisation. The previous methods such as Bayesian-based and genetic-based optimisation, which are implemented in Auto-Weka, Auto-sklearn and TPOT, evaluate pipelines by executing them. Therefore, the pipeline composition and optimisation of these methods requires a tremendous amount of time that prevents them from exploring complex pipelines to find better predictive models. To further explore this research challenge, we have conducted experiments showing that many of the generated pipelines are invalid, and it is unnecessary to execute them to find out whether they are good pipelines. To address this issue, we propose a novel method to evaluate the validity of ML pipelines using a surrogate model (AVATAR). The AVATAR enables to accelerate automatic ML pipeline composition and optimisation by quickly ignoring invalid pipelines. Our experiments show that the AVATAR is more efficient in evaluating complex pipelines in comparison with the traditional evaluation approaches requiring their execution

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p
    corecore