1,395 research outputs found

    Adversarial Imitation Learning from Incomplete Demonstrations

    Full text link
    Imitation learning targets deriving a mapping from states to actions, a.k.a. policy, from expert demonstrations. Existing methods for imitation learning typically require any actions in the demonstrations to be fully available, which is hard to ensure in real applications. Though algorithms for learning with unobservable actions have been proposed, they focus solely on state information and overlook the fact that the action sequence could still be partially available and provide useful information for policy deriving. In this paper, we propose a novel algorithm called Action-Guided Adversarial Imitation Learning (AGAIL) that learns a policy from demonstrations with incomplete action sequences, i.e., incomplete demonstrations. The core idea of AGAIL is to separate demonstrations into state and action trajectories, and train a policy with state trajectories while using actions as auxiliary information to guide the training whenever applicable. Built upon the Generative Adversarial Imitation Learning, AGAIL has three components: a generator, a discriminator, and a guide. The generator learns a policy with rewards provided by the discriminator, which tries to distinguish state distributions between demonstrations and samples generated by the policy. The guide provides additional rewards to the generator when demonstrated actions for specific states are available. We compare AGAIL to other methods on benchmark tasks and show that AGAIL consistently delivers comparable performance to the state-of-the-art methods even when the action sequence in demonstrations is only partially available.Comment: Accepted to International Joint Conference on Artificial Intelligence (IJCAI-19

    Combating False Negatives in Adversarial Imitation Learning

    Full text link
    In adversarial imitation learning, a discriminator is trained to differentiate agent episodes from expert demonstrations representing the desired behavior. However, as the trained policy learns to be more successful, the negative examples (the ones produced by the agent) become increasingly similar to expert ones. Despite the fact that the task is successfully accomplished in some of the agent's trajectories, the discriminator is trained to output low values for them. We hypothesize that this inconsistent training signal for the discriminator can impede its learning, and consequently leads to worse overall performance of the agent. We show experimental evidence for this hypothesis and that the 'False Negatives' (i.e. successful agent episodes) significantly hinder adversarial imitation learning, which is the first contribution of this paper. Then, we propose a method to alleviate the impact of false negatives and test it on the BabyAI environment. This method consistently improves sample efficiency over the baselines by at least an order of magnitude.Comment: This is an extended version of the student abstract published at 34th AAAI Conference on Artificial Intelligenc

    Imitation learning by state-only distribution matching

    Get PDF
    Imitation Learning from observation describes policy learning in a similar way to human learning. An agent’s policy is trained by observing an expert performing a task. Although many state-only imitation learning approaches are based on adversarial imitation learning, one main drawback is that adversarial training is often unstable and lacks a reliable convergence estimator. If the true environment reward is unknown and cannot be used to select the best-performing model, this can result in bad real-world policy performance. We propose a non-adversarial learning-from-observations approach, together with an interpretable convergence and performance metric. Our training objective minimizes the Kulback-Leibler divergence (KLD) between the policy and expert state transition trajectories which can be optimized in a non-adversarial fashion. Such methods demonstrate improved robustness when learned density models guide the optimization. We further improve the sample efficiency by rewriting the KLD minimization as the Soft Actor Critic objective based on a modified reward using additional density models that estimate the environment’s forward and backward dynamics. Finally, we evaluate the effectiveness of our approach on well-known continuous control environments and show state-of-the-art performance while having a reliable performance estimator compared to several recent learning-from-observation methods

    Visual Imitation Learning with Recurrent Siamese Networks

    Full text link
    It would be desirable for a reinforcement learning (RL) based agent to learn behaviour by merely watching a demonstration. However, defining rewards that facilitate this goal within the RL paradigm remains a challenge. Here we address this problem with Siamese networks, trained to compute distances between observed behaviours and the agent's behaviours. Given a desired motion such Siamese networks can be used to provide a reward signal to an RL agent via the distance between the desired motion and the agent's motion. We experiment with an RNN-based comparator model that can compute distances in space and time between motion clips while training an RL policy to minimize this distance. Through experimentation, we have had also found that the inclusion of multi-task data and an additional image encoding loss helps enforce the temporal consistency. These two components appear to balance reward for matching a specific instance of behaviour versus that behaviour in general. Furthermore, we focus here on a particularly challenging form of this problem where only a single demonstration is provided for a given task -- the one-shot learning setting. We demonstrate our approach on humanoid agents in both 2D with 1010 degrees of freedom (DoF) and 3D with 3838 DoF.Comment: PrePrin

    Causal Confusion in Imitation Learning

    Get PDF
    Behavioral cloning reduces policy learning to supervised learning by training a discriminative model to predict expert actions given observations. Such discriminative models are non-causal: the training procedure is unaware of the causal structure of the interaction between the expert and the environment. We point out that ignoring causality is particularly damaging because of the distributional shift in imitation learning. In particular, it leads to a counter-intuitive "causal misidentification" phenomenon: access to more information can yield worse performance. We investigate how this problem arises, and propose a solution to combat it through targeted interventions---either environment interaction or expert queries---to determine the correct causal model. We show that causal misidentification occurs in several benchmark control domains as well as realistic driving settings, and validate our solution against DAgger and other baselines and ablations.Comment: Published at NeurIPS 2019 9 pages, plus references and appendice
    • …
    corecore