6,120 research outputs found

    Deep learning for speech enhancement : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    Speech enhancement, aiming at improving the intelligibility and overall perceptual quality of a contaminated speech signal, is an effective way to improve speech communications. In this thesis, we propose three novel deep learning methods to improve speech enhancement performance. Firstly, we propose an adversarial latent representation learning for latent space exploration of generative adversarial network based speech enhancement. Based on adversarial feature learning, this method employs an extra encoder to learn an inverse mapping from the generated data distribution to the latent space. The encoder establishes an inner connection with the generator and contributes to latent information learning. Secondly, we propose an adversarial multi-task learning with inverse mappings method for effective speech representation. This speech enhancement method focuses on enhancing the generator's capability of speech information capture and representation learning. To implement this method, two extra networks are developed to learn the inverse mappings from the generated distribution to the input data domains. Thirdly, we propose a self-supervised learning based phone-fortified method to improve specific speech characteristics learning for speech enhancement. This method explicitly imports phonetic characteristics into a deep complex convolutional network via a contrastive predictive coding model pre-trained with self-supervised learning. The experimental results demonstrate that the proposed methods outperform previous speech enhancement methods and achieve state-of-the-art performance in terms of speech intelligibility and overall perceptual quality

    SEGAN: Speech Enhancement Generative Adversarial Network

    Full text link
    Current speech enhancement techniques operate on the spectral domain and/or exploit some higher-level feature. The majority of them tackle a limited number of noise conditions and rely on first-order statistics. To circumvent these issues, deep networks are being increasingly used, thanks to their ability to learn complex functions from large example sets. In this work, we propose the use of generative adversarial networks for speech enhancement. In contrast to current techniques, we operate at the waveform level, training the model end-to-end, and incorporate 28 speakers and 40 different noise conditions into the same model, such that model parameters are shared across them. We evaluate the proposed model using an independent, unseen test set with two speakers and 20 alternative noise conditions. The enhanced samples confirm the viability of the proposed model, and both objective and subjective evaluations confirm the effectiveness of it. With that, we open the exploration of generative architectures for speech enhancement, which may progressively incorporate further speech-centric design choices to improve their performance.Comment: 5 pages, 4 figures, accepted in INTERSPEECH 201
    • …
    corecore