13,628 research outputs found

    MeGA-CDA: Memory Guided Attention for Category-Aware Unsupervised Domain Adaptive Object Detection

    Full text link
    Existing approaches for unsupervised domain adaptive object detection perform feature alignment via adversarial training. While these methods achieve reasonable improvements in performance, they typically perform category-agnostic domain alignment, thereby resulting in negative transfer of features. To overcome this issue, in this work, we attempt to incorporate category information into the domain adaptation process by proposing Memory Guided Attention for Category-Aware Domain Adaptation (MeGA-CDA). The proposed method consists of employing category-wise discriminators to ensure category-aware feature alignment for learning domain-invariant discriminative features. However, since the category information is not available for the target samples, we propose to generate memory-guided category-specific attention maps which are then used to route the features appropriately to the corresponding category discriminator. The proposed method is evaluated on several benchmark datasets and is shown to outperform existing approaches.Comment: Accepted to CVPR 202

    Deep Subdomain Adaptation Network for Image Classification

    Full text link
    For a target task where labeled data is unavailable, domain adaptation can transfer a learner from a different source domain. Previous deep domain adaptation methods mainly learn a global domain shift, i.e., align the global source and target distributions without considering the relationships between two subdomains within the same category of different domains, leading to unsatisfying transfer learning performance without capturing the fine-grained information. Recently, more and more researchers pay attention to Subdomain Adaptation which focuses on accurately aligning the distributions of the relevant subdomains. However, most of them are adversarial methods which contain several loss functions and converge slowly. Based on this, we present Deep Subdomain Adaptation Network (DSAN) which learns a transfer network by aligning the relevant subdomain distributions of domain-specific layer activations across different domains based on a local maximum mean discrepancy (LMMD). Our DSAN is very simple but effective which does not need adversarial training and converges fast. The adaptation can be achieved easily with most feed-forward network models by extending them with LMMD loss, which can be trained efficiently via back-propagation. Experiments demonstrate that DSAN can achieve remarkable results on both object recognition tasks and digit classification tasks. Our code will be available at: https://github.com/easezyc/deep-transfer-learningComment: published on TNNL

    Deep Cocktail Network: Multi-source Unsupervised Domain Adaptation with Category Shift

    Full text link
    Unsupervised domain adaptation (UDA) conventionally assumes labeled source samples coming from a single underlying source distribution. Whereas in practical scenario, labeled data are typically collected from diverse sources. The multiple sources are different not only from the target but also from each other, thus, domain adaptater should not be modeled in the same way. Moreover, those sources may not completely share their categories, which further brings a new transfer challenge called category shift. In this paper, we propose a deep cocktail network (DCTN) to battle the domain and category shifts among multiple sources. Motivated by the theoretical results in \cite{mansour2009domain}, the target distribution can be represented as the weighted combination of source distributions, and, the multi-source unsupervised domain adaptation via DCTN is then performed as two alternating steps: i) It deploys multi-way adversarial learning to minimize the discrepancy between the target and each of the multiple source domains, which also obtains the source-specific perplexity scores to denote the possibilities that a target sample belongs to different source domains. ii) The multi-source category classifiers are integrated with the perplexity scores to classify target sample, and the pseudo-labeled target samples together with source samples are utilized to update the multi-source category classifier and the feature extractor. We evaluate DCTN in three domain adaptation benchmarks, which clearly demonstrate the superiority of our framework.Comment: Accepted for publication in Conference on Computer Vision and Pattern Recognition(CVPR), 201

    Domain-Symmetric Networks for Adversarial Domain Adaptation

    Full text link
    Unsupervised domain adaptation aims to learn a model of classifier for unlabeled samples on the target domain, given training data of labeled samples on the source domain. Impressive progress is made recently by learning invariant features via domain-adversarial training of deep networks. In spite of the recent progress, domain adaptation is still limited in achieving the invariance of feature distributions at a finer category level. To this end, we propose in this paper a new domain adaptation method called Domain-Symmetric Networks (SymNets). The proposed SymNet is based on a symmetric design of source and target task classifiers, based on which we also construct an additional classifier that shares with them its layer neurons. To train the SymNet, we propose a novel adversarial learning objective whose key design is based on a two-level domain confusion scheme, where the category-level confusion loss improves over the domain-level one by driving the learning of intermediate network features to be invariant at the corresponding categories of the two domains. Both domain discrimination and domain confusion are implemented based on the constructed additional classifier. Since target samples are unlabeled, we also propose a scheme of cross-domain training to help learn the target classifier. Careful ablation studies show the efficacy of our proposed method. In particular, based on commonly used base networks, our SymNets achieve the new state of the art on three benchmark domain adaptation datasets.Comment: CVPR 2019 camera ready. Codes are available at: https://github.com/YBZh/SymNet

    Progressive Feature Alignment for Unsupervised Domain Adaptation

    Full text link
    Unsupervised domain adaptation (UDA) transfers knowledge from a label-rich source domain to a fully-unlabeled target domain. To tackle this task, recent approaches resort to discriminative domain transfer in virtue of pseudo-labels to enforce the class-level distribution alignment across the source and target domains. These methods, however, are vulnerable to the error accumulation and thus incapable of preserving cross-domain category consistency, as the pseudo-labeling accuracy is not guaranteed explicitly. In this paper, we propose the Progressive Feature Alignment Network (PFAN) to align the discriminative features across domains progressively and effectively, via exploiting the intra-class variation in the target domain. To be specific, we first develop an Easy-to-Hard Transfer Strategy (EHTS) and an Adaptive Prototype Alignment (APA) step to train our model iteratively and alternatively. Moreover, upon observing that a good domain adaptation usually requires a non-saturated source classifier, we consider a simple yet efficient way to retard the convergence speed of the source classification loss by further involving a temperature variate into the soft-max function. The extensive experimental results reveal that the proposed PFAN exceeds the state-of-the-art performance on three UDA datasets.Comment: Accepted by CVPR 201

    Unsupervised Open Domain Recognition by Semantic Discrepancy Minimization

    Full text link
    We address the unsupervised open domain recognition (UODR) problem, where categories in labeled source domain S is only a subset of those in unlabeled target domain T. The task is to correctly classify all samples in T including known and unknown categories. UODR is challenging due to the domain discrepancy, which becomes even harder to bridge when a large number of unknown categories exist in T. Moreover, the classification rules propagated by graph CNN (GCN) may be distracted by unknown categories and lack generalization capability. To measure the domain discrepancy for asymmetric label space between S and T, we propose Semantic-Guided Matching Discrepancy (SGMD), which first employs instance matching between S and T, and then the discrepancy is measured by a weighted feature distance between matched instances. We further design a limited balance constraint to achieve a more balanced classification output on known and unknown categories. We develop Unsupervised Open Domain Transfer Network (UODTN), which learns both the backbone classification network and GCN jointly by reducing the SGMD, enforcing the limited balance constraint and minimizing the classification loss on S. UODTN better preserves the semantic structure and enforces the consistency between the learned domain invariant visual features and the semantic embeddings. Experimental results show superiority of our method on recognizing images of both known and unknown categories.Comment: Accepted to CVPR 2019, 10 pages, 4 figure

    Transfer Adaptation Learning: A Decade Survey

    Full text link
    The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as transfer adaptation learning (TAL) when it needs knowledge correspondence between different moments/domains. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. TAL aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance, which is presenting a blowout publication trend. This paper surveys the advances of TAL methodologies in the past decade, and the technical challenges and essential problems of TAL have been observed and discussed with deep insights and new perspectives. Broader solutions of transfer adaptation learning being created by researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey helps researchers rapidly but comprehensively understand and identify the research foundation, research status, theoretical limitations, future challenges and under-studied issues (universality, interpretability, and credibility) to be broken in the field toward universal representation and safe applications in open-world scenarios.Comment: 26 pages, 4 figure

    Adversarial Transfer Learning for Cross-domain Visual Recognition

    Full text link
    In many practical visual recognition scenarios, feature distribution in the source domain is generally different from that of the target domain, which results in the emergence of general cross-domain visual recognition problems. To address the problems of visual domain mismatch, we propose a novel semi-supervised adversarial transfer learning approach, which is called Coupled adversarial transfer Domain Adaptation (CatDA), for distribution alignment between two domains. The proposed CatDA approach is inspired by cycleGAN, but leveraging multiple shallow multilayer perceptrons (MLPs) instead of deep networks. Specifically, our CatDA comprises of two symmetric and slim sub-networks, such that the coupled adversarial learning framework is formulated. With such symmetry of two generators, the input data from source/target domain can be fed into the MLP network for target/source domain generation, supervised by two confrontation oriented coupled discriminators. Notably, in order to avoid the critical flaw of high-capacity of the feature extraction function during domain adversarial training, domain specific loss and domain knowledge fidelity loss are proposed in each generator, such that the effectiveness of the proposed transfer network is guaranteed. Additionally, the essential difference from cycleGAN is that our method aims to generate domain-agnostic and aligned features for domain adaptation and transfer learning rather than synthesize realistic images. We show experimentally on a number of benchmark datasets and the proposed approach achieves competitive performance over state-of-the-art domain adaptation and transfer learning approaches

    Adversarial Domain Adaptation Being Aware of Class Relationships

    Full text link
    Adversarial training is a useful approach to promote the learning of transferable representations across the source and target domains, which has been widely applied for domain adaptation (DA) tasks based on deep neural networks. Until very recently, existing adversarial domain adaptation (ADA) methods ignore the useful information from the label space, which is an important factor accountable for the complicated data distributions associated with different semantic classes. Especially, the inter-class semantic relationships have been rarely considered and discussed in the current work of transfer learning. In this paper, we propose a novel relationship-aware adversarial domain adaptation (RADA) algorithm, which first utilizes a single multi-class domain discriminator to enforce the learning of inter-class dependency structure during domain-adversarial training and then aligns this structure with the inter-class dependencies that are characterized from training the label predictor on source domain. Specifically, we impose a regularization term to penalize the structure discrepancy between the inter-class dependencies respectively estimated from domain discriminator and label predictor. Through this alignment, our proposed method makes the adversarial domain adaptation aware of the class relationships. Empirical studies show that the incorporation of class relationships significantly improves the performance on benchmark datasets

    Domain Adversarial Reinforcement Learning for Partial Domain Adaptation

    Full text link
    Partial domain adaptation aims to transfer knowledge from a label-rich source domain to a label-scarce target domain which relaxes the fully shared label space assumption across different domains. In this more general and practical scenario, a major challenge is how to select source instances in the shared classes across different domains for positive transfer. To address this issue, we propose a Domain Adversarial Reinforcement Learning (DARL) framework to automatically select source instances in the shared classes for circumventing negative transfer as well as to simultaneously learn transferable features between domains by reducing the domain shift. Specifically, in this framework, we employ deep Q-learning to learn policies for an agent to make selection decisions by approximating the action-value function. Moreover, domain adversarial learning is introduced to learn domain-invariant features for the selected source instances by the agent and the target instances, and also to determine rewards for the agent based on how relevant the selected source instances are to the target domain. Experiments on several benchmark datasets demonstrate that the superior performance of our DARL method over existing state of the arts for partial domain adaptation
    corecore