977 research outputs found

    Adversarial Defense via Data Dependent Activation Function and Total Variation Minimization

    Full text link
    We improve the robustness of Deep Neural Net (DNN) to adversarial attacks by using an interpolating function as the output activation. This data-dependent activation remarkably improves both the generalization and robustness of DNN. In the CIFAR10 benchmark, we raise the robust accuracy of the adversarially trained ResNet20 from ∼46%\sim 46\% to ∼69%\sim 69\% under the state-of-the-art Iterative Fast Gradient Sign Method (IFGSM) based adversarial attack. When we combine this data-dependent activation with total variation minimization on adversarial images and training data augmentation, we achieve an improvement in robust accuracy by 38.9%\% for ResNet56 under the strongest IFGSM attack. Furthermore, We provide an intuitive explanation of our defense by analyzing the geometry of the feature space.Comment: 17 pages, 6 figure

    Mathematical Analysis of Adversarial Attacks

    Full text link
    In this paper, we analyze efficacy of the fast gradient sign method (FGSM) and the Carlini-Wagner's L2 (CW-L2) attack. We prove that, within a certain regime, the untargeted FGSM can fool any convolutional neural nets (CNNs) with ReLU activation; the targeted FGSM can mislead any CNNs with ReLU activation to classify any given image into any prescribed class. For a special two-layer neural network: a linear layer followed by the softmax output activation, we show that the CW-L2 attack increases the ratio of the classification probability between the target and ground truth classes. Moreover, we provide numerical results to verify all our theoretical results.Comment: 21 page

    White-Box Adversarial Defense via Self-Supervised Data Estimation

    Full text link
    In this paper, we study the problem of how to defend classifiers against adversarial attacks that fool the classifiers using subtly modified input data. In contrast to previous works, here we focus on the white-box adversarial defense where the attackers are granted full access to not only the classifiers but also defenders to produce as strong attacks as possible. In such a context we propose viewing a defender as a functional, a higher-order function that takes functions as its argument to represent a function space, rather than fixed functions conventionally. From this perspective, a defender should be realized and optimized individually for each adversarial input. To this end, we propose RIDE, an efficient and provably convergent self-supervised learning algorithm for individual data estimation to protect the predictions from adversarial attacks. We demonstrate the significant improvement of adversarial defense performance on image recognition, eg, 98%, 76%, 43% test accuracy on MNIST, CIFAR-10, and ImageNet datasets respectively under the state-of-the-art BPDA attacker

    Graph Interpolating Activation Improves Both Natural and Robust Accuracies in Data-Efficient Deep Learning

    Full text link
    Improving the accuracy and robustness of deep neural nets (DNNs) and adapting them to small training data are primary tasks in deep learning research. In this paper, we replace the output activation function of DNNs, typically the data-agnostic softmax function, with a graph Laplacian-based high dimensional interpolating function which, in the continuum limit, converges to the solution of a Laplace-Beltrami equation on a high dimensional manifold. Furthermore, we propose end-to-end training and testing algorithms for this new architecture. The proposed DNN with graph interpolating activation integrates the advantages of both deep learning and manifold learning. Compared to the conventional DNNs with the softmax function as output activation, the new framework demonstrates the following major advantages: First, it is better applicable to data-efficient learning in which we train high capacity DNNs without using a large number of training data. Second, it remarkably improves both natural accuracy on the clean images and robust accuracy on the adversarial images crafted by both white-box and black-box adversarial attacks. Third, it is a natural choice for semi-supervised learning. For reproducibility, the code is available at \url{https://github.com/BaoWangMath/DNN-DataDependentActivation}.Comment: 34 pages, 10 figure

    PacGAN: The power of two samples in generative adversarial networks

    Full text link
    Generative adversarial networks (GANs) are innovative techniques for learning generative models of complex data distributions from samples. Despite remarkable recent improvements in generating realistic images, one of their major shortcomings is the fact that in practice, they tend to produce samples with little diversity, even when trained on diverse datasets. This phenomenon, known as mode collapse, has been the main focus of several recent advances in GANs. Yet there is little understanding of why mode collapse happens and why existing approaches are able to mitigate mode collapse. We propose a principled approach to handling mode collapse, which we call packing. The main idea is to modify the discriminator to make decisions based on multiple samples from the same class, either real or artificially generated. We borrow analysis tools from binary hypothesis testing---in particular the seminal result of Blackwell [Bla53]---to prove a fundamental connection between packing and mode collapse. We show that packing naturally penalizes generators with mode collapse, thereby favoring generator distributions with less mode collapse during the training process. Numerical experiments on benchmark datasets suggests that packing provides significant improvements in practice as well.Comment: 49 pages, 24 figure

    ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies

    Full text link
    Empirical adversarial risk minimization (EARM) is a widely used mathematical framework to robustly train deep neural nets (DNNs) that are resistant to adversarial attacks. However, both natural and robust accuracies, in classifying clean and adversarial images, respectively, of the trained robust models are far from satisfactory. In this work, we unify the theory of optimal control of transport equations with the practice of training and testing of ResNets. Based on this unified viewpoint, we propose a simple yet effective ResNets ensemble algorithm to boost the accuracy of the robustly trained model on both clean and adversarial images. The proposed algorithm consists of two components: First, we modify the base ResNets by injecting a variance specified Gaussian noise to the output of each residual mapping. Second, we average over the production of multiple jointly trained modified ResNets to get the final prediction. These two steps give an approximation to the Feynman-Kac formula for representing the solution of a transport equation with viscosity, or a convection-diffusion equation. For the CIFAR10 benchmark, this simple algorithm leads to a robust model with a natural accuracy of {\bf 85.62}\% on clean images and a robust accuracy of 57.94%{\bf 57.94 \%} under the 20 iterations of the IFGSM attack, which outperforms the current state-of-the-art in defending against IFGSM attack on the CIFAR10. Both natural and robust accuracies of the proposed ResNets ensemble can be improved dynamically as the building block ResNet advances. The code is available at: \url{https://github.com/BaoWangMath/EnResNet}.Comment: 18 pages, 6 figure

    Improving Adversarial Robustness via Channel-wise Activation Suppressing

    Full text link
    The study of adversarial examples and their activation has attracted significant attention for secure and robust learning with deep neural networks (DNNs). Different from existing works, in this paper, we highlight two new characteristics of adversarial examples from the channel-wise activation perspective: 1) the activation magnitudes of adversarial examples are higher than that of natural examples; and 2) the channels are activated more uniformly by adversarial examples than natural examples. We find that the state-of-the-art defense adversarial training has addressed the first issue of high activation magnitudes via training on adversarial examples, while the second issue of uniform activation remains. This motivates us to suppress redundant activation from being activated by adversarial perturbations via a Channel-wise Activation Suppressing (CAS) strategy. We show that CAS can train a model that inherently suppresses adversarial activation, and can be easily applied to existing defense methods to further improve their robustness. Our work provides a simple but generic training strategy for robustifying the intermediate layer activation of DNNs.Comment: ICLR2021 accepted pape

    Monge blunts Bayes: Hardness Results for Adversarial Training

    Full text link
    The last few years have seen a staggering number of empirical studies of the robustness of neural networks in a model of adversarial perturbations of their inputs. Most rely on an adversary which carries out local modifications within prescribed balls. None however has so far questioned the broader picture: how to frame a resource-bounded adversary so that it can be severely detrimental to learning, a non-trivial problem which entails at a minimum the choice of loss and classifiers. We suggest a formal answer for losses that satisfy the minimal statistical requirement of being proper. We pin down a simple sufficient property for any given class of adversaries to be detrimental to learning, involving a central measure of "harmfulness" which generalizes the well-known class of integral probability metrics. A key feature of our result is that it holds for all proper losses, and for a popular subset of these, the optimisation of this central measure appears to be independent of the loss. When classifiers are Lipschitz -- a now popular approach in adversarial training --, this optimisation resorts to optimal transport to make a low-budget compression of class marginals. Toy experiments reveal a finding recently separately observed: training against a sufficiently budgeted adversary of this kind improves generalization

    Security Matters: A Survey on Adversarial Machine Learning

    Full text link
    Adversarial machine learning is a fast growing research area, which considers the scenarios when machine learning systems may face potential adversarial attackers, who intentionally synthesize input data to make a well-trained model to make mistake. It always involves a defending side, usually a classifier, and an attacking side that aims to cause incorrect output. The earliest studies on the adversarial examples for machine learning algorithms start from the information security area, which considers a much wider varieties of attacking methods. But recent research focus that popularized by the deep learning community places strong emphasis on how the "imperceivable" perturbations on the normal inputs may cause dramatic mistakes by the deep learning with supposed super-human accuracy. This paper serves to give a comprehensive introduction to a range of aspects of the adversarial deep learning topic, including its foundations, typical attacking and defending strategies, and some extended studies

    SPLASH: Learnable Activation Functions for Improving Accuracy and Adversarial Robustness

    Get PDF
    We introduce SPLASH units, a class of learnable activation functions shown to simultaneously improve the accuracy of deep neural networks while also improving their robustness to adversarial attacks. SPLASH units have both a simple parameterization and maintain the ability to approximate a wide range of non-linear functions. SPLASH units are: 1) continuous; 2) grounded (f(0) = 0); 3) use symmetric hinges; and 4) the locations of the hinges are derived directly from the data (i.e. no learning required). Compared to nine other learned and fixed activation functions, including ReLU and its variants, SPLASH units show superior performance across three datasets (MNIST, CIFAR-10, and CIFAR-100) and four architectures (LeNet5, All-CNN, ResNet-20, and Network-in-Network). Furthermore, we show that SPLASH units significantly increase the robustness of deep neural networks to adversarial attacks. Our experiments on both black-box and open-box adversarial attacks show that commonly-used architectures, namely LeNet5, All-CNN, ResNet-20, and Network-in-Network, can be up to 31% more robust to adversarial attacks by simply using SPLASH units instead of ReLUs
    • …
    corecore