148 research outputs found

    Application of reduced-set pareto-lipschitzian optimization to truss optimization

    Get PDF
    In this paper, a recently proposed global Lipschitz optimization algorithm Pareto-Lipschitzian Optimization with Reduced-set (PLOR) is further developed, investigated and applied to truss optimization problems. Partition patterns of the PLOR algorithm are similar to those of DIviding RECTangles (DIRECT), which was widely applied to different real-life problems. However here a set of all Lipschitz constants is reduced to just two: the maximal and the minimal ones. In such a way the PLOR approach is independent of any user-defined parameters and balances equally local and global search during the optimization process. An expanded list of other well-known DIRECT-type algorithms is used in investigation and experimental comparison using the standard test problems and truss optimization problems. The experimental investigation shows that the PLOR algorithm gives very competitive results to other DIRECT-type algorithms using standard test problems and performs pretty well on real truss optimization problems

    Simplicial Global Optimization

    Full text link

    Guest editors’ preface to the special issue devoted to the 2nd International Conference “Numerical Computations: Theory and Algorithms”, June 19–25, 2016, Pizzo Calabro, Italy

    Get PDF
    This special issue of the Journal of Global Optimization contains twelve high-quality research papers devoted to different aspects of global optimization such as theory, numerical methods and real-life applications. The papers included in this special issue are based on the presentations carefully selected by the guest editors among the talks delivered at the 2nd International Conference “Numerical Computations: Theory and Algorithms (NUMTA)” held in June 19–25, 2016 in Pizzo Calabro, Italy (the first NUMTA conference took place in Falerna, Italy in 2013). The NUMTA 2016 has been organized by the University of Calabria, Rende (CS), Italy, in cooperation with the Society for Industrial and Applied Mathematics, USA. The guest editors actively participated in the organization of the conference: the Program Committee of the NUMTA 2016 was chaired by Yaroslav D. Sergeyev, in their turn, Renato De Leone and Anatoly Zhigljavsky took part in the Program Committee. The goal of the NUMTA 2016 was creation of a multidisciplinary round table for an open discussion on numerical modeling nature by using traditional and emerging computational paradigms. Participants of this conference discussed several aspects of numerical computations and modeling from foundations of mathematics and computer science to advanced numerical techniques. A large part of presentations has been dedicated to optimization. Selected papers presented at the conference in the field of numerical analysis and respective applications have been published in the special issue of the international journal Applied Mathematics and Computation, Volume 318 (2018). In its turn, the present special issue contains articles dealing with global optimization. Let us give a brief description of the papers included in this special issue

    Extended cutting angle method of global optimization

    Full text link
    Methods of Lipschitz optimization allow one to find and confirm the global minimum of multivariate Lipschitz functions using a finite number of function evaluations. This paper extends the Cutting Angle method, in which the optimization problem is solved by building a sequence of piecewise linear underestimates of the objective function. We use a more flexible set of support functions, which yields a better underestimate of a Lipschitz objective function. An efficient algorithm for enumeration of all local minima of the underestimate is presented, along with the results of numerical experiments. One dimensional Pijavski-Shubert method arises as a special case of the proposed approach.<br /

    A simplicial homology algorithm for Lipschitz optimisation

    Get PDF
    The simplicial homology global optimisation (SHGO) algorithm is a general purpose global optimisation algorithm based on applications of simplicial integral homology and combinatorial topology. SHGO approximates the homology groups of a complex built on a hypersurface homeomorphic to a complex on the objective function. This provides both approximations of locally convex subdomains in the search space through Sperner’s lemma and a useful visual tool for characterising and efficiently solving higher dimensional black and grey box optimisation problems. This complex is built up using sampling points within the feasible search space as vertices. The algorithm is specialised in finding all the local minima of an objective function with expensive function evaluations efficiently which is especially suitable to applications such as energy landscape exploration. SHGO was initially developed as an improvement on the topographical global optimisation (TGO) method. It is proven that the SHGO algorithm will always outperform TGO on function evaluations if the objective function is Lipschitz smooth. In this paper SHGO is applied to non-convex problems with linear and box constraints with bounds placed on the variables. Numerical experiments on linearly constrained test problems show that SHGO gives competitive results compared to TGO and the recently developed Lc-DISIMPL algorithm as well as the PSwarm, LGO and DIRECT-L1 algorithms. Furthermore SHGO is compared with the TGO, basinhopping (BH) and differential evolution (DE) global optimisation algorithms over a large selection of black-box problems with bounds placed on the variables from the SciPy benchmarking test suite. A Python implementation of the SHGO and TGO algorithms published under a MIT license can be found from https://bitbucket.org/upiamcompthermo/shgo/.http://link.springer.com/journal/108982019-10-01hj2018Chemical Engineerin

    Approximation of explicit model predictive control using regular piecewise affine functions: an input-to-state stability approach

    Get PDF
    Abstract Piecewise affine (PWA) feedback control laws defined on general polytopic partitions, as for instance obtained by explicit MPC, will often be prohibitively complex for fast systems. In this work we study the problem of approximating these high-complexity controllers by low-complexity PWA control laws defined on more regular partitions, facilitating faster on-line evaluation. The approach is based on the concept of input-to-state stability (ISS). In particular, the existence of an ISS Lyapunov function (LF) is exploited to obtain a priori conditions that guarantee asymptotic stability and constraint satisfaction of the approximate low-complexity controller. These conditions can be expressed as local semidefinite programs (SDPs) or linear programs (LPs), in case of 2-norm or 1, ∞-norm based ISS, respectively, and apply to PWA plants. In addition, as ISS is a prerequisite for our approximation method, we provide two tractable computational methods for deriving the necessary ISS inequalities from nominal stability. A numerical example is provided that illustrates the main results. The authors are with the Hybrid an

    Hybrid Integrator-Gain Systems:Analysis, Design, and Applications

    Get PDF
    corecore