54,264 research outputs found

    3D face recognition using photometric stereo

    Get PDF
    Automatic face recognition has been an active research area for the last four decades. This thesis explores innovative bio-inspired concepts aimed at improved face recognition using surface normals. New directions in salient data representation are explored using data captured via a photometric stereo method from the University of the West of England’s “Photoface” device. Accuracy assessments demonstrate the advantage of the capture format and the synergy offered by near infrared light sources in achieving more accurate results than under conventional visible light. Two 3D face databases have been created as part of the thesis – the publicly available Photoface database which contains 3187 images of 453 subjects and the 3DE-VISIR dataset which contains 363 images of 115 people with different expressions captured simultaneously under near infrared and visible light. The Photoface database is believed to be the ?rst to capture naturalistic 3D face models. Subsets of these databases are then used to show the results of experiments inspired by the human visual system. Experimental results show that optimal recognition rates are achieved using surprisingly low resolution of only 10x10 pixels on surface normal data, which corresponds to the spatial frequency range of optimal human performance. Motivated by the observed increase in recognition speed and accuracy that occurs in humans when faces are caricatured, novel interpretations of caricaturing using outlying data and pixel locations with high variance show that performance remains disproportionately high when up to 90% of the data has been discarded. These direct methods of dimensionality reduction have useful implications for the storage and processing requirements for commercial face recognition systems. The novel variance approach is extended to recognise positive expressions with 90% accuracy which has useful implications for human-computer interaction as well as ensuring that a subject has the correct expression prior to recognition. Furthermore, the subject recognition rate is improved by removing those pixels which encode expression. Finally, preliminary work into feature detection on surface normals by extending Haar-like features is presented which is also shown to be useful for correcting the pose of the head as part of a fully operational device. The system operates with an accuracy of 98.65% at a false acceptance rate of only 0.01 on front facing heads with neutral expressions. The work has shown how new avenues of enquiry inspired by our observation of the human visual system can offer useful advantages towards achieving more robust autonomous computer-based facial recognition

    Toward a social psychophysics of face communication

    Get PDF
    As a highly social species, humans are equipped with a powerful tool for social communication—the face, which can elicit multiple social perceptions in others due to the rich and complex variations of its movements, morphology, and complexion. Consequently, identifying precisely what face information elicits different social perceptions is a complex empirical challenge that has largely remained beyond the reach of traditional research methods. More recently, the emerging field of social psychophysics has developed new methods designed to address this challenge. Here, we introduce and review the foundational methodological developments of social psychophysics, present recent work that has advanced our understanding of the face as a tool for social communication, and discuss the main challenges that lie ahead

    Recurrent Attention Models for Depth-Based Person Identification

    Get PDF
    We present an attention-based model that reasons on human body shape and motion dynamics to identify individuals in the absence of RGB information, hence in the dark. Our approach leverages unique 4D spatio-temporal signatures to address the identification problem across days. Formulated as a reinforcement learning task, our model is based on a combination of convolutional and recurrent neural networks with the goal of identifying small, discriminative regions indicative of human identity. We demonstrate that our model produces state-of-the-art results on several published datasets given only depth images. We further study the robustness of our model towards viewpoint, appearance, and volumetric changes. Finally, we share insights gleaned from interpretable 2D, 3D, and 4D visualizations of our model's spatio-temporal attention.Comment: Computer Vision and Pattern Recognition (CVPR) 201

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150

    RGBD Datasets: Past, Present and Future

    Full text link
    Since the launch of the Microsoft Kinect, scores of RGBD datasets have been released. These have propelled advances in areas from reconstruction to gesture recognition. In this paper we explore the field, reviewing datasets across eight categories: semantics, object pose estimation, camera tracking, scene reconstruction, object tracking, human actions, faces and identification. By extracting relevant information in each category we help researchers to find appropriate data for their needs, and we consider which datasets have succeeded in driving computer vision forward and why. Finally, we examine the future of RGBD datasets. We identify key areas which are currently underexplored, and suggest that future directions may include synthetic data and dense reconstructions of static and dynamic scenes.Comment: 8 pages excluding references (CVPR style

    The Visual Social Distancing Problem

    Get PDF
    One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out the reasons of the possible breaks of such distance limitations, and understand if this implies a possible threat given the scene context. All of this, complying with privacy policies and making the measurement acceptable. To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation of the inter-personal distance from an image, and the characterization of the related people aggregations. VSD is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide statistics about the level of safety of specific areas whenever this constraint is violated. We then discuss how VSD relates with previous literature in Social Signal Processing and indicate which existing Computer Vision methods can be used to manage such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical implications and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this manuscript and they are listed by alphabetical order. Under submissio

    A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment

    Full text link
    Face analysis techniques have become a crucial component of human-machine interaction in the fields of assistive and humanoid robotics. However, the variations in head-pose that arise naturally in these environments are still a great challenge. In this paper, we present a real-time capable 3D face modelling framework for 2D in-the-wild images that is applicable for robotics. The fitting of the 3D Morphable Model is based exclusively on automatically detected landmarks. After fitting, the face can be corrected in pose and transformed back to a frontal 2D representation that is more suitable for face recognition. We conduct face recognition experiments with non-frontal images from the MUCT database and uncontrolled, in the wild images from the PaSC database, the most challenging face recognition database to date, showing an improved performance. Finally, we present our SCITOS G5 robot system, which incorporates our framework as a means of image pre-processing for face analysis
    • …
    corecore