17,659 research outputs found

    What can AI do for you?

    Get PDF
    Simply put, most organizations do not know how to approach the incorporation of AI into their businesses, and few are knowledgeable enough to understand which concepts are applicable to their business models. Doing nothing and waiting is not an option: Mahidar and Davenport (2018) argue that companies that try to play catch-up will ultimately lose to those who invested and began learning early. But how do we bridge the gap between skepticism and adoption? We propose a toolkit, inclusive of people, processes, and technologies, to help companies with discovery and readiness to start their AI journey. Our toolkit will deliver specific and actionable answers to the operative question: What can AI do for you

    Biomedical Informatics Applications for Precision Management of Neurodegenerative Diseases

    Get PDF
    Modern medicine is in the midst of a revolution driven by “big data,” rapidly advancing computing power, and broader integration of technology into healthcare. Highly detailed and individualized profiles of both health and disease states are now possible, including biomarkers, genomic profiles, cognitive and behavioral phenotypes, high-frequency assessments, and medical imaging. Although these data are incredibly complex, they can potentially be used to understand multi-determinant causal relationships, elucidate modifiable factors, and ultimately customize treatments based on individual parameters. Especially for neurodegenerative diseases, where an effective therapeutic agent has yet to be discovered, there remains a critical need for an interdisciplinary perspective on data and information management due to the number of unanswered questions. Biomedical informatics is a multidisciplinary field that falls at the intersection of information technology, computer and data science, engineering, and healthcare that will be instrumental for uncovering novel insights into neurodegenerative disease research, including both causal relationships and therapeutic targets and maximizing the utility of both clinical and research data. The present study aims to provide a brief overview of biomedical informatics and how clinical data applications such as clinical decision support tools can be developed to derive new knowledge from the wealth of available data to advance clinical care and scientific research of neurodegenerative diseases in the era of precision medicine

    Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.

    Get PDF
    BackgroundAlthough studies involving preterm infants ≀34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≀276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≀256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth

    Learning from accidents : machine learning for safety at railway stations

    Get PDF
    In railway systems, station safety is a critical aspect of the overall structure, and yet, accidents at stations still occur. It is time to learn from these errors and improve conventional methods by utilizing the latest technology, such as machine learning (ML), to analyse accidents and enhance safety systems. ML has been employed in many fields, including engineering systems, and it interacts with us throughout our daily lives. Thus, we must consider the available technology in general and ML in particular in the context of safety in the railway industry. This paper explores the employment of the decision tree (DT) method in safety classification and the analysis of accidents at railway stations to predict the traits of passengers affected by accidents. The critical contribution of this study is the presentation of ML and an explanation of how this technique is applied for ensuring safety, utilizing automated processes, and gaining benefits from this powerful technology. To apply and explore this method, a case study has been selected that focuses on the fatalities caused by accidents at railway stations. An analysis of some of these fatal accidents as reported by the Rail Safety and Standards Board (RSSB) is performed and presented in this paper to provide a broader summary of the application of supervised ML for improving safety at railway stations. Finally, this research shows the vast potential of the innovative application of ML in safety analysis for the railway industry

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Mapping the Current Landscape of Research Library Engagement with Emerging Technologies in Research and Learning: Final Report

    Get PDF
    The generation, dissemination, and analysis of digital information is a significant driver, and consequence, of technological change. As data and information stewards in physical and virtual space, research libraries are thoroughly entangled in the challenges presented by the Fourth Industrial Revolution:1 a societal shift powered not by steam or electricity, but by data, and characterized by a fusion of the physical and digital worlds.2 Organizing, structuring, preserving, and providing access to growing volumes of the digital data generated and required by research and industry will become a critically important function. As partners with the community of researchers and scholars, research libraries are also recognizing and adapting to the consequences of technological change in the practices of scholarship and scholarly communication. Technologies that have emerged or become ubiquitous within the last decade have accelerated information production and have catalyzed profound changes in the ways scholars, students, and the general public create and engage with information. The production of an unprecedented volume and diversity of digital artifacts, the proliferation of machine learning (ML) technologies,3 and the emergence of data as the “world’s most valuable resource,”4 among other trends, present compelling opportunities for research libraries to contribute in new and significant ways to the research and learning enterprise. Librarians are all too familiar with predictions of the research library’s demise in an era when researchers have so much information at their fingertips. A growing body of evidence provides a resounding counterpoint: that the skills, experience, and values of librarians, and the persistence of libraries as an institution, will become more important than ever as researchers contend with the data deluge and the ephemerality and fragility of much digital content. This report identifies strategic opportunities for research libraries to adopt and engage with emerging technologies,5 with a roughly fiveyear time horizon. It considers the ways in which research library values and professional expertise inform and shape this engagement, the ways library and library worker roles will be reconceptualized, and the implication of a range of technologies on how the library fulfills its mission. The report builds on a literature review covering the last five years of published scholarship, primarily North American information science literature, and interviews with a dozen library field experts, completed in fall 2019. It begins with a discussion of four cross-cutting opportunities that permeate many or all aspects of research library services. Next, specific opportunities are identified in each of five core research library service areas: facilitating information discovery, stewarding the scholarly and cultural record, advancing digital scholarship, furthering student learning and success, and creating learning and collaboration spaces. Each section identifies key technologies shaping user behaviors and library services, and highlights exemplary initiatives. Underlying much of the discussion in this report is the idea that “digital transformation is increasingly about change management”6 —that adoption of or engagement with emerging technologies must be part of a broader strategy for organizational change, for “moving emerging work from the periphery to the core,”7 and a broader shift in conceptualizing the research library and its services. Above all, libraries are benefitting from the ways in which emerging technologies offer opportunities to center users and move from a centralized and often siloed service model to embedded, collaborative engagement with the research and learning enterprise

    Integrative AI-Driven Strategies for Advancing Precision Medicine in Infectious Diseases and Beyond: A Novel Multidisciplinary Approach

    Full text link
    Precision medicine, tailored to individual patients based on their genetics, environment, and lifestyle, shows promise in managing complex diseases like infections. Integrating artificial intelligence (AI) into precision medicine can revolutionize disease management. This paper introduces a novel approach using AI to advance precision medicine in infectious diseases and beyond. It integrates diverse fields, analyzing patients' profiles using genomics, proteomics, microbiomics, and clinical data. AI algorithms process vast data, providing insights for precise diagnosis, treatment, and prognosis. AI-driven predictive modeling empowers healthcare providers to make personalized and effective interventions. Collaboration among experts from different domains refines AI models and ensures ethical and robust applications. Beyond infections, this AI-driven approach can benefit other complex diseases. Precision medicine powered by AI has the potential to transform healthcare into a proactive, patient-centric model. Research is needed to address privacy, regulations, and AI integration into clinical workflows. Collaboration among researchers, healthcare institutions, and policymakers is crucial in harnessing AI-driven strategies for advancing precision medicine and improving patient outcomes
    • 

    corecore