14 research outputs found

    TUT-microfactory – a small-size, modular and sustainable production system

    Get PDF
    Part of: Seliger, Günther (Ed.): Innovative solutions : proceedings / 11th Global Conference on Sustainable Manufacturing, Berlin, Germany, 23rd - 25th September, 2013. - Berlin: Universitätsverlag der TU Berlin, 2013. - ISBN 978-3-7983-2609-5 (online). - http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-40276. - pp. 78-83.Micro and desktop factories are small size production systems suitable for fabricating and assembling small parts and products. The development originates in the early 1990’s Japan, where small machines were designed in order to save resources when producing small products. This paper introduces the modular TUTMicrofactory concept, developed at Tampere University of Technology during the past 15 years, and its applications. The sustainability of miniaturized production systems is discussed from three perspectives – environmental, economic and social. The main conclusion is that micro and desktop factories can remarkably enhance the sustainability of manufacturing from all these three perspectives

    Micro and Desktop Factory Roadmap

    Get PDF
    Terms desktop and microfactory both refer to production equipment that is miniaturized down to the level where it can placed on desktop and manually moved without any lifting aids. In this context, micro does not necessarily refer to the size of parts produced or their features, or the actual size or resolution of the equipment. Instead, micro refers to a general objective of downscaling production equipment to the same scale with the products they are manufacturing. Academic research literature speculates with several advantages and benefits of using miniaturized production equipment. These range from reduced use of energy and other resources (such as raw material) to better operator ergonomics and from greater equipment flexibility and reconfigurability to ubiquitous manufacturing (manufacturing on-the-spot, i.e. manufacturing the end product where it is used). Academic research has also generated several pieces of equipment and application demonstrations, and many of those are described in this document. Despite of nearly two decades of academic research, wider industrial breakthrough has not yet taken place and, in fact, many of the speculated advantages have not been proven or are not (yet) practical. However, there are successful industrial examples including miniaturized machining units; robotic, assembly and process cells; as well as other pieces of desktop scale equipment. These are also presented in this document. Looking at and analysing the current state of micro and desktop production related academic and commercial research and development, there are notable gaps that should be addressed. Many of these are general to several fields, such as understanding the actual needs of industry, whereas some are specific to miniaturised production field. One such example is the size of the equipment: research equipment is often “too small” to be commercially viable alternative. However, it is important to seek the limits of miniaturisation and even though research results might not be directly adaptable to industrial use, companies get ideas and solution models from research. The field of desktop production is new and the future development directions are not clear. In general, there seems to be two main development directions for micro and desktop factory equipment: 1) Small size equipment assisting human operators at the corner of desk 2) Small size equipment forming fully automatic production lines (including line components, modules, and cells) These, and other aspects including visions of potential application areas and business models for system providers, are discussed in detail in this roadmap. To meet the visions presented, some actions are needed. Therefore, this document gives guidelines for various industrial user groups (end users of miniaturized production equipment, system providers/integrators and component providers) as well as academia for forming their strategies in order to exploit the benefits of miniaturized production. To summarise, the basic guidelines for different actors are: • Everyone: Push the desktop ideology and awareness of the technology and its possibilities. Market and be present at events where potential new fields get together. Tell what is available and what is needed. • Equipment end users: Specify and determine what is needed. Be brave to try out new ways of doing things. Think what is really needed – do not over specify. • System providers / integrators: Organize own operations and product portfolios so that supplying equipment fulfilling the end user specifications can be done profitably. • Component providers: Design and supply components which are cost-efficient and easy to integrate to and to take into use in desktop scale equipment. • Academia: Look further into future, support industrial sector in their shorter term development work and act as a facilitator for cooperation between different actors

    Liiketoimintamallit ja sovellukset mikro- ja desktoptehtaille

    Get PDF
    The terms microfactory and desktop factory originates from Japan in the 1990’s. Small machines were developed to produce small parts and save resources. In the late 1990’s, the research spread around the world, and multiple miniaturized concepts were introduced. However, the level of commercialization remains low. More empirical evidence and business aspect is needed. This thesis discusses how the systems can be used and how the providers benefit of it, now and in the future. The research includes 18 semi-structured interviews in Europe. The interviewees are both from academic and industry, including equipment and component providers, and users and potential users. According to the interviews, research and the industry have different viewpoints to the miniaturization. Within the academics, miniaturization links to a general philosophy to match the products in size. In the industry, the small size is only a secondary sales argument. The main factors preventing breakthrough are the lack of small subsystems, the lack of examples and production engineers’ attitudes. It appears that the technology is in the beginning of the S-curve, and it has systematic development as well as slow technology diffusion. More cooperation and a large scale demonstration are needed. In the literature, there are multiple applications. The MEMS industry is stated as one promising industry. The research aims usually for high level of automation. Based on interviews, the systems are used as a semi-automatic tool for component manufacturing and assembly. In the future, educational and laboratory use as well as prototyping are promising. Local cleanrooms interest but questions arise. In addition, retail level personalization, home fabrication and the MEMS industry include problems. For providers, the technology offers two promising customer segments (Lean manufacturers and fully loaded factories), few additional segments (e.g. educational, laboratories and offices) and it eases some alternative charging models (e.g. leasing, and capacity sales)

    Implementing additive manufacturing in microfactories

    Get PDF
    This thesis presents two technologies with the potential to radically change the way we manufacture, design and recycle products in the future. The two technologies in question are additive manufacturing (also known as 3D printing, rapid prototyping, solid freeform manufacturing, and a variety of other names) and the microfactory concept. In this work, the technological basis for both these technologies and their status in industrial manufacturing is briefly examined. The aim of the microfactory concept can be described simply: to miniaturize production equipment to roughly the same size as the product. This reduces the energy consumption and factory floor space of the production process. The benefits of the concept also include faster setup times and improved usability. On the other hand, some barriers also exist, these being mainly the lack of examples and components. TUT’s Department of Production Engineering has been active in the field, demonstrating a modular microfactory concept suitable for a variety of cases. Additive manufacturing, or 3d printing as it is more commonly known, refers to a group of technologies which allow fabricating parts layer-by-layer, eliminating the need for subtractive shaping of the parts. A CAD model is “sliced” so that each cross-sectional slice equals one layer of the part built by the additive manufacturing machine. This allows producing parts with geometries impossible to manufacture using traditional methods, e.g. a sphere within a sphere. In practice, two types of additive manufacturing are happening currently: industrial production, characterized by expensive machines, materials and parts and low volumes, and peer production, in which consumers are purchasing or building their own low-cost machines and producing customized products at home. Some synergies and potential applications for combining the concepts have been found. Additionally, some technical concepts were developed and presented in the thesis. Finally, the validity of these ideas is briefly discussed in the conclusion of the thesis

    International Workshop on MicroFactories (IWMF 2012): 17th-20th June 2012 Tampere Hall Tampere, Finland

    Get PDF
    This Workshop provides a forum for researchers and practitioners in industry working on the diverse issues of micro and desktop factories, as well as technologies and processes applicable for micro and desktop factories. Micro and desktop factories decrease the need of factory floor space, and reduce energy consumption and improve material and resource utilization thus strongly supporting the new sustainable manufacturing paradigm. They can be seen also as a proper solution to point-of-need manufacturing of customized and personalized products near the point of need

    Cyber-Physical Systems for Micro-/Nano-assembly Operations: a Survey

    Get PDF
    Abstract Purpose of Review Latest requirements of the global market force manufacturing systems to a change for a new production paradigm (Industry 4.0). Cyber-Physical Systems (CPS) appear as a solution to be deployed in different manufacturing fields, especially those with high added value and technological complexity, high product variants, and short time to market. In this sense, this paper aims at reviewing the introduction level of CPS technologies in micro/nano-manufacturing and how these technologies could cope with these challenging manufacturing requirements. Recent Findings The introduction of CPS is still in its infancy on many industrial applications, but it actually demonstrates its potential to support future manufacturing paradigm. However, only few research works in micro/nano-manufacturing considered CPS frameworks, since the concept barely appeared a decade ago. Summary Some contributions have revealed the potential of CPS technologies to improve manufacturing performance which may be scaled to the micro/nano-manufacturing. IoT-based frameworks with VR/AR technologies allow distributed and collaborative systems, or agent-based architectures with advance algorithm implementations that improve the flexibility and performance of micro-/nano-assembly operations. Future research of CPS in micro-/nano-assembly operations should be followed by more studies of its technical deployment showing its implications under other perspectives, i.e. sustainable, economic, and social point of views, to take full advance of all its features

    Microfactory concept with bilevel modularity

    Get PDF
    There has been an increasing demand for miniaturization of products in the last decades. As a result of that, miniaturization and micro systems have become an important topic of research. As the technologies of micro manufacturing improve and are gradually started to be used, new devices have started to emerge in to the market. However, the miniaturization of the products is not paralleled to the sizes of the equipment used for their production. The conventional equipment for production of microparts is comparable in size and energy consumption to their counterparts in the macro world. The miniaturization of products and parts is slowly paving the way to the miniaturization of the production equipment and facilities, enabling efficient use of energy for production, improvement in material resource utilization and high speed and precision which in turn will lead to an increase in the amount of products produced more precisely. These led to the introduction of the microfactory concept which involves the miniaturization of the conventional production systems with all their features trying to facilitate the advantages that are given above. The aim of this thesis is to develop a module structure for production and assembly which can be cascaded with other modules in order to form a layout for the production of a specific product. The layout can also be changed in order to configure the microfactory for the production of another product. This feature brings flexibility to the system in the sense of product design and customization of products. Each module having its own control system, is able to perform its duty with the equipment placed into it. In order to form different layouts using the modules to build up a complete production chain, each module is equipped with necessary interface modules for the interaction and communication with the other process modules. In this work, the concept of process oriented modules with bilevel modularity is introduced for the development of microfactory modules. The first phase of the project is defined to be the realization of an assembly module and forms the content of this thesis. The assembly module contains parallel kinematics robots as manipulators which performs the assigned operations. One of the most important part here is to configure the structure of the module (control system/interface and communication units, etc.) which will in the future enable the easy integration of different process modules in order to form a whole microfactory which will have the ability to perform all phases of production necessary for the manufacturing of a product. The assembly module is a miniaturized version of the conventional factories (i.e. an assembly line) in such a way that the existing industrial standards are imitated within the modules of the microfactory. So that one who is familiar with the conventional systems can also be familiar with the construction of the realized miniature system and can easily setup the system according to the needs of the application. Thus, this is an important step towards the come in to use of the miniaturized production units in the industry. In order to achieve that kind of structure, necessary control hardware and software architecture are implemented which allows easy configuration of the system according to the processes. The modularity and reconfigurability in the software structure also have significant importance besides the modularity of the mechanical structure. The miniaturization process for the assembly cell includes the miniaturization of the parallel manipulators, transportation system in between the assembly nodes or in between different modules and the control system hardware. Visual sensor utilization for the visual feedback is enabled for the assembly process at the necessary nodes. The assembly module is developed and experiments are realized in order to test the performance of the module

    Capability-based adaptation of production systems in a changing environment

    Get PDF
    Today’s production systems have to cope with volatile production environments characterized by frequently changing customer requirements, an increasing number of product variants, small batch sizes, short product life-cycles, the rapid emergence of new technical solutions and increasing regulatory requirements aimed at sustainable manufacturing. These constantly changing requirements call for adaptive and rapidly responding production systems that can adjust to the required changes in processing functions, production capacity and the distribution of the orders. This adaptation is required on the physical, logical and parametric levels. Such adaptivity cannot be achieved without intelligent methodologies, information models and tools to facilitate the adaptation planning and reactive adaptation of the systems. In industry it has been recognized that, because of the often expensive and inefficient adaptation process, companies rarely decide to adapt their production lines. This is mainly due to a lack of sufficient information and documentation about the capabilities of the current system and its lifecycle, as well as a lack of detailed methods for planning the adaptation, which makes it impossible to accurately estimate its scale and cost. Currently, the adaptation of production systems is in practice a human driven process, which relies strongly on the expertise and tacit knowledge of the system integrators or the end-user of the system. This thesis develops a capability-based, computer-aided adaptation methodology, which supports both the human-controlled adaptation planning and the dynamic reactive adaptation of production systems. The methodology consists of three main elements. The first element is the adaptation schema, which illustrates the activities and information flows involved in the overall adaptation planning process and the resources used to support the planning. The adaptation schema forms the backbone of the methodology, guiding the use of other developed elements during both the adaptation planning and reactive adaptation. The second element, which is actually the core of the developed methodology, is the formal ontological resource description used to describe the resources based on their capabilities. The overall resource description utilizes a capability model, which divides the capabilities into simple and combined capabilities. The resources are assigned the simple capabilities they possess. When multiple resources are co-operating, their combined capability can be reasoned out based on the associations defined in the capability model. The adaptation methodology is based on the capability-based matching of product requirements and available system capabilities in the context of the adaptation process. Thus, the third main element developed in this thesis is the framework and rules for performing this capability matching. The approach allows automatic information filtering and the generation of system configuration scenarios for the given requirements, thus facilitating the rapid allocation of resources and the adaptation of systems. Human intelligence is used to validate the automatically-generated scenarios and to select the best one, based on the desired criteria. Based on these results, an approach to evaluating the compatibility of an existing production system with different product requirements has been formulated. This approach evaluates the impact any changes in these requirements may have on the production system. The impact of the changes is illustrated in the form of compatibility graphs, which enable comparison between different product scenarios in terms of the effort required to implement the system adaptation, and the extent to which the current system can be utilized to meet the new requirements. It thus aids in making decisions regarding product and production strategies and adaptation

    Formal Digital Description of Production Equipment Modules for supporting System Design and Deployment

    Get PDF
    The requirements for production systems are moving towards higher flexibility, adaptability and reactivity. Increasing volatility in global and local economies, shorter product life cycles and the ever-increasing number of product variants arising from product customization have led to a demand for production systems which can respond more rapidly to these changing requirements. Therefore, whenever a new product, or product variant, enters production, the production system designer must be able to create an easily-reconfigurable production system which not only meets the User Requirements (UR) but is quick and cost-efficient to set up. Modern production systems must be able to integrate new product variants with minimum effort. In the event of a product changeover or an unforeseen incident, such as the mechanical failure of a production resource, it must be possible to reconfigure the production system smoothly and seamlessly by adding, removing or altering the resources. Ideally, auto-configuration should obviate the need to manually re-programme the system once it has been reconfigured.The cornerstone of any solution to the above-mentioned challenges is the concept of being able to create formalised, comprehensive descriptions of all production resources. Providing universally-recognised digital representations of all the multifarious resources used in a production system would enable a standardised exchange of information between the different actors involved in building a new production system. Such freely available and machine-readable information could also be utilised by the wide variety of software tools that come into play during the different life cycle phases of a production system, thus considerably extending its useful life. These digital descriptions would also offer a multi-faceted foundation for the reconfiguration of production systems. The production paradigms presented here would support state-of-the-art production systems, such as Reconfigurable Manufacturing Systems (RMSs), Holonic Manufacturing Systems (HMSs) and Evolvable Production Systems (EPSs).The methodological framework for this research is Design Research Methodology (DRM) supported with Systems Engineering, Action Research, and case-based research. The first two were used to develop the concept and data models for the resource descriptions, through a process of iterative development. The case-based research was used for verification, through the modelling and analysis of two separate production systems used in this research. The concept, on which this thesis is based, is itself based on the triplicity of production system design, i.e. Product, Process and Resource. The processes, are implemented through the capabilities of the resources, which are thus directly linked to the product requirements. The driving force behind this new approach to production system design is its strong emphasis on making production systems that can be reconfigured easily. Successful system reconfiguration can only be achieved, however, if all the required production resources can be quickly and easily compared to all the available production resources in one unified, and universally accepted form. These descriptions must not only be able to capture all of a production system’s capabilities, but must also include information about its interfaces, kinematics, technical properties and its control and communication abilities.The answer to this lies in the Emplacement Concept, which is described and developed in this thesis. The Emplacement Concept proposes the creation of a multi-layered Generic Model containing information about production resources in three different layers. These are the Abstract Module Description (AMD), the Module Description (MD), and the Module Instance Description (MID). Each of these layers has unique characteristics which can be utilised in the different phases of designing, commissioning and reconfiguring a production system. The AMD is the most abstract (general) descriptive layer and can be used for initial system design iterations. It ensures that the proposed resources for the production system are exchangeable and interchangeable, and thus guides the selection of production resources and the implementation (or reconfiguration) of a production system. The MD is the next level down, and provides a more detailed description of the type of production resource, providing ’finer granularity’ for the descriptions. The MID provides the finest level of granularity and contains invaluable information about the individual instances of a particular production resource. This research involves two practical implementations of the Generic Model. These are used to model and digitally represent all the production resources used in the two use-case environments. All the modules in the production systems (25 in all) were modelled and described with the data models developed here. In fact, we were able to freeze the data models after the first case study, as they didn’t need any major changes in order to model the production resources of the second use-case environment. This demonstrates the general applicability of the proposed approach for modelling modular production resources.The advantages of being able to describe production resources in a unified digital form are many and varied. For example, production systems which are described in this way are much more agile. They can react faster to changes in demand and can be reconfigured easily and quickly. The resource descriptions also improve the sustainability of production systems because they provide detailed information about the exact capabilities and characteristics of all the available resources. This means that production system designers are better placed to utilise ready-made modules, (design by re-use). Being able to use readily available production modules means that the Time to Market and Time to Volume are improved, as new production systems can be built or reconfigured using tested and fully operational modules, which can easily be integrated into an already operational production system. Finally, the resource descriptions are an essential source of information for auto-configuration tools, allowing automated, or semi-automated production system design. However, harvesting the full benefits of all these outcomes requires that the tools used to create new production systems can understand and utilise the modular descriptions proposed by this concept. This, in turn, presupposes that the all the formalised descriptions of the production modules provided here will be made publicly available, and will form the basis for an ever-expanding library of such descriptions

    Reconfigurable and transportable container-integrated production system

    Get PDF
    In this paper, the concept and the prototype realization of a novel reconfigurable small-footprint manufacturing system in a transportable container is presented. The containerized format enables transportation of the system to provide on-site manufacturing, enabling the benefits of localized service delivery without duplication of equipment at multiple locations. Three industrial product use cases with varying manufacturing and performance requirements were analyzed. All of the use cases demanded highly customized products with high quality in low production volumes. Based on their requirements, a general system specification was derived and used to develop a concept for the container-integrated factory. A reconfigurable, modular manufacturing system is integral to the overall container concept. Production equipment was integrated in the form of interchangeable process modules, which can be quickly connected by standard utility supply and control interfaces. A modular and self-configuring control system provides assisted production workflow programming, while a modular process chain combining Additive Manufacturing, milling, precision assembly and cleaning processes has been developed. A prototype of the container-integrated factory with reconfigurable process modules and control system has been established, with full functionality and feasibility of the system demonstrated
    corecore