101,292 research outputs found

    Chebyshev pseudospectral methods for conservation laws with source terms and applications to multiphase flow

    Get PDF
    Pseudospectral methods are well known to produce superior results for the solution of partial differential equations whose solutions have a certain amount of regularity. Recent advances have made possible the use of spectral methods for the solution of conservation laws whose solutions may contain shocks. We use a recently described Super Spectral Viscosity method to obtain stable approximations of Systems of Nonlinear Hyperbolic Conservation Laws. A recently developed postprocessing method, which is theoretically capable of completely removing the Gibbs phenomenon from the Super Spectral Viscosity approximation, is examined. The postprocessing method has shown great promise when applied in some simple cases. We discuss its application to more complicated problems and examine the possibility of the method being used as a black box postprocessing method. Applications to multiphase fluid flow are made

    Acceleration Methods

    Full text link
    This monograph covers some recent advances in a range of acceleration techniques frequently used in convex optimization. We first use quadratic optimization problems to introduce two key families of methods, namely momentum and nested optimization schemes. They coincide in the quadratic case to form the Chebyshev method. We discuss momentum methods in detail, starting with the seminal work of Nesterov and structure convergence proofs using a few master templates, such as that for optimized gradient methods, which provide the key benefit of showing how momentum methods optimize convergence guarantees. We further cover proximal acceleration, at the heart of the Catalyst and Accelerated Hybrid Proximal Extragradient frameworks, using similar algorithmic patterns. Common acceleration techniques rely directly on the knowledge of some of the regularity parameters in the problem at hand. We conclude by discussing restart schemes, a set of simple techniques for reaching nearly optimal convergence rates while adapting to unobserved regularity parameters.Comment: Published in Foundation and Trends in Optimization (see https://www.nowpublishers.com/article/Details/OPT-036

    Quantile calculus and censored regression

    Full text link
    Quantile regression has been advocated in survival analysis to assess evolving covariate effects. However, challenges arise when the censoring time is not always observed and may be covariate-dependent, particularly in the presence of continuously-distributed covariates. In spite of several recent advances, existing methods either involve algorithmic complications or impose a probability grid. The former leads to difficulties in the implementation and asymptotics, whereas the latter introduces undesirable grid dependence. To resolve these issues, we develop fundamental and general quantile calculus on cumulative probability scale in this article, upon recognizing that probability and time scales do not always have a one-to-one mapping given a survival distribution. These results give rise to a novel estimation procedure for censored quantile regression, based on estimating integral equations. A numerically reliable and efficient Progressive Localized Minimization (PLMIN) algorithm is proposed for the computation. This procedure reduces exactly to the Kaplan--Meier method in the kk-sample problem, and to standard uncensored quantile regression in the absence of censoring. Under regularity conditions, the proposed quantile coefficient estimator is uniformly consistent and converges weakly to a Gaussian process. Simulations show good statistical and algorithmic performance. The proposal is illustrated in the application to a clinical study.Comment: Published in at http://dx.doi.org/10.1214/09-AOS771 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stationary multivariate subdivision: Joint spectral radius and asymptotic similarity

    Get PDF
    In this paper we study scalar multivariate non-stationary subdivision schemes with a general integer dilation matrix. We present a new numerically efficient method for checking convergence and H ̈older regularity of such schemes. This method relies on the concepts of approximate sum rules, asymptotic similarity and the so-called joint spectral radius of a finite set of square matrices. The combination of these concepts allows us to employ recent advances in linear algebra for exact computation of the joint spectral radius that have had already a great impact on studies of stationary subdivision schemes. We also expose the limitations of non-stationary schemes in their capability to reproduce and generate certain function spaces. We illustrate our results with several examples

    On the Complexity of Solving Quadratic Boolean Systems

    Full text link
    A fundamental problem in computer science is to find all the common zeroes of mm quadratic polynomials in nn unknowns over F2\mathbb{F}_2. The cryptanalysis of several modern ciphers reduces to this problem. Up to now, the best complexity bound was reached by an exhaustive search in 4log2n2n4\log_2 n\,2^n operations. We give an algorithm that reduces the problem to a combination of exhaustive search and sparse linear algebra. This algorithm has several variants depending on the method used for the linear algebra step. Under precise algebraic assumptions on the input system, we show that the deterministic variant of our algorithm has complexity bounded by O(20.841n)O(2^{0.841n}) when m=nm=n, while a probabilistic variant of the Las Vegas type has expected complexity O(20.792n)O(2^{0.792n}). Experiments on random systems show that the algebraic assumptions are satisfied with probability very close to~1. We also give a rough estimate for the actual threshold between our method and exhaustive search, which is as low as~200, and thus very relevant for cryptographic applications.Comment: 25 page
    corecore