5,332 research outputs found

    Investigation of the bandwidth of multimode optical fibers used with 1550-nm LED and laser sources

    Get PDF
    Multimode optical fibers are not intended to be used with 1550-nm sources; however, it is desirable to utilize 1300/1550-nm wavelength division multiplexing (WDM) on some multimode fibers at Kennedy Space Center (KSC). No information from fiber vendors nor from the literature is available to support this use. Preliminary studies at KSC have suggested that these fibers might be usable at 1550-nm if the fibers possessed enough bandwidth when sourced by LEDs. Detailed bandwidth studies were made on 12 multimode fibers using 1300- and 1550-nm lasers and LEDs. The results showed that the modal bandwidth at 1550-nm was about 50 percent of the 1300-nm value and that the chromatic dispersion could be predicted by extrapolating the vendor's specifications for wavelengths outside the 1550-nm region. Utilizing these data, predictions of the fiber's optical bandwidth were accurately made. Problems with launch conditions and possible differential attenuation at connectors was noted at 1300-nm but was less significant at 1550-nm. It appears that the multimode fibers studied will offer adequate performance in the 1550-nm region for a number of current KSC needs. Studies of additional fibers are encouraged to gain more confidence and better understanding of the 1550-nm bandwidth of KSC's multimode optical fibers before committing to 1300/1550-nm WDM

    Design trade-offs for cost-effective multimode fiber channel equalizers in optical data center applications

    Get PDF
    A 10-Gb/s transmission over 1-km standard multimode fiber for data center applications is casestudied in terms of the design considerations for low-complexity and cost-effective equalizers which can increase the reach of multimode fiber links

    Evaluation and Analysis of the ANSI X3T9.5 (FDDI) PMD and Proposed SMF-PMD as Influenced by Various Fiber Link Characteristics

    Get PDF
    The purpose of this project is to evaluate the operational parameters of the Kennedy Space Center (KSC) fiber optic cable plant. The evaluation is based on the Fiber Distributed Data Interface (FDDI) Physical Medium Dependent (PMD) and Single Mode Fiber (SMF) PMD standards. From the KSC fiber profile, it would be necessary to develop the modifications needed in existing FDDI PMD and proposed SMF-PMD standards to provide for FDDI implementation and operation at KSC. This analysis should examine the major factors that influence the operating conditions of the KSC fiber plant. These factors would include, but are not limited to the number and type of connectors, attenuation and dispersion characteristics of the fiber, non-standard fiber sizes, modal bandwidth, and many other relevant or significant fiber plant characteristics that effect FDDI characteristics. This analysis is needed to gain a better understanding of overall impact that each of these factors have on FDDI performance at KSC

    Infrared attenuation of thallium bromo-iodide fibers

    Get PDF
    Analysis of attenuation measurements in the near infrared of an unclad fiber of Thallium Bromo-Iodide (Th(Br,I)), a polycrystalline thallium halide, is presented. A general overview is given of the properties of fiber optics. Two groups of attenuation measurements, for the region 1.2 to 3.4 and for 3 to 11 microns, respectively, are presented, analyzed, and compared with those of two other groups of researchers

    Turning Optical Complex Media into Universal Reconfigurable Linear Operators by Wavefront Shaping

    Full text link
    Performing linear operations using optical devices is a crucial building block in many fields ranging from telecommunication to optical analogue computation and machine learning. For many of these applications, key requirements are robustness to fabrication inaccuracies and reconfigurability. Current designs of custom-tailored photonic devices or coherent photonic circuits only partially satisfy these needs. Here, we propose a way to perform linear operations by using complex optical media such as multimode fibers or thin scattering layers as a computational platform driven by wavefront shaping. Given a large random transmission matrix (TM) representing light propagation in such a medium, we can extract a desired smaller linear operator by finding suitable input and output projectors. We discuss fundamental upper bounds on the size of the linear transformations our approach can achieve and provide an experimental demonstration. For the latter, first we retrieve the complex medium's TM with a non-interferometric phase retrieval method. Then, we take advantage of the large number of degrees of freedom to find input wavefronts using a Spatial Light Modulator (SLM) that cause the system, composed of the SLM and the complex medium, to act as a desired complex-valued linear operator on the optical field. We experimentally build several 16×1616\times16 complex-valued operators, and are able to switch from one to another at will. Our technique offers the prospect of reconfigurable, robust and easy-to-fabricate linear optical analogue computation units

    Modally Resolved Fabry-Perot Experiment with Semiconductor Waveguides

    Get PDF
    Based on the interaction between different spatial modes, semiconductor Bragg-reflection waveguides provide a highly functional platform for non-linear optics. Therefore, the control and engineering of the properties of each spatial mode is essential. Despite the multimodeness of our waveguide, the well-established Fabry-Perot technique for recording fringes in the optical transmission spectrum can successfully be employed for a detailed linear optical characterization when combined with Fourier analysis. A prerequisite for the modal sensitivity is a finely resolved transmission spectrum that is recorded over a broad frequency band. Our results highlight how the features of different spatial modes, such as their loss characteristics and dispersion properties, can be separated from each other allowing their comparison. The mode-resolved measurements are important for optimizing the performance of such multimode waveguides by tailoring the properties of their spatial modes.Comment: 8 pages, 7 figure
    corecore