250 research outputs found

    Linear Estimation in Interconnected Sensor Systems with Information Constraints

    Get PDF
    A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed

    Linear Estimation in Interconnected Sensor Systems with Information Constraints

    Get PDF
    A ubiquitous challenge in many technical applications is to estimate an unknown state by means of data that stems from several, often heterogeneous sensor sources. In this book, information is interpreted stochastically, and techniques for the distributed processing of data are derived that minimize the error of estimates about the unknown state. Methods for the reconstruction of dependencies are proposed and novel approaches for the distributed processing of noisy data are developed

    Distributed Estimation with Decentralized Control for Quadruple-Tank Process

    Full text link
    This paper proposes the design of quadruple-tank process due to the unique multivariable MIMO system under minimum and non-minimum scenario with respect to the valve ratio. This model is then implemented the distributed estimation algorithm with decentralized control. The inputs are set in divergent gains of pumps while the four-tank process is interconnected so that the stability properties are different, making the usage of decentralized control is reasonable. The number of outputs is designed the same as those of inputs which are also that of distributed Luenberger observer with the continuous linearized dynamical system. This distributed comprises local estimates only in certain output, meaning that it would lead to insufficiency so that the neighbouring links under some network topologies are required in the dynamical system. This concept fortunately works in two different characteristic stability of the tank process regarding estimating the states. This success leads to the further research of the more large-scale complex system.Comment: 7 pages, 9 figure

    Future Directions in Machine Learning

    Get PDF

    Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    Get PDF
    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described

    Distributed Estimation Using Partial Knowledge about Correlated Estimation Errors

    Get PDF
    Sensornetzwerke werden in vielen verschiedenen Anwendungen, z. B. zur Überwachung des Flugraumes oder zur Lokalisierung in Innenräumen eingesetzt. Dabei werden Sensoren häufig räumlich verteilt, um eine möglichst gute Abdeckung des zu beobachtenden Prozesses zu ermöglichen. Sowohl der Prozess als auch die Sensormessungen unterliegen stochastischem Rauschen. Daher wird oftmals eine Zustandsschätzung, z. B. durch ein Kalmanfilter durchgeführt, welcher die Unsicherheiten aus dem Prozess- und Messmodel systematisch berücksichtigt. Die Kooperation der individuellen Sensorknoten erlaubt eine verbesserte Schätzung des Systemzustandes des beobachteten Prozesses. Durch die lokale Verarbeitung der Sensordaten direkt in den Sensorknoten können Sensornetzwerke flexibel und modular entworfen werden und skalieren auch bei steigender Anzahl der Einzelkomponenten gut. Zusätzlich werden Sensornetzwerke dadurch robuster, da die Funktionsfähigkeit des Systems nicht von einem einzigen zentralen Knoten abhängt, der alle Sensordaten sammelt und verarbeitet. Ein Nachteil der verteilten Schätzung ist jedoch die Entstehung von korrelierten Schätzfehlern durch die lokale Verarbeitung in den Filtern. Diese Korrelationen müssen systematisch berücksichtigt werden, um genau und zuverlässig den Systemzustand zu schätzen. Dabei muss oftmals ein Kompromiss zwischen Schätzgenauigkeit und den begrenzt verfügbaren Ressourcen wie Bandbreite, Speicher und Energie gefunden werden. Eine zusätzliche Herausforderung sind unterschiedliche Netzwerktopologien sowie die Heterogenität lokaler Informationen und Filter, welche das Nachvollziehen der individuellen Verarbeitungsschritte innerhalb der Sensorknoten und der korrelierten Schätzfehler erschweren. Diese Dissertation beschäftigt sich mit der Fusion von Zustandsschätzungen verteilter Sensorknoten. Speziell wird betrachtet, wie korrelierte Schätzfehler entweder vollständig oder teilweise gelernt werden können, um eine präzisere und weniger unsichere fusionierte Zustandsschätzung zu erhalten. Um Wissen über korrelierte Schätzfehler zu erhalten, werden in dieser Arbeit sowohl analytische als auch simulations-basierte Ansätze verfolgt. Eine analytische Berechnung der Korrelationen zwischen Zustandsschätzungen ist möglich, wenn alle Verarbeitungsschritte und Parameter der lokalen Filter bekannt sind. Dadurch kann z. B. ein zentraler Fusionsknoten die die Korrelation zwischen den Schätzfehlern rekonstruieren. Dieses zentralisierte Vorgehen ist jedoch oft sehr aufwendig und benötigt entweder eine hohe Kommunikationsrate oder Vorwissen über die lokale Verarbeitungsschritte und Filterparameter. Daher wurden in den letzten Jahren zunehmend dezentrale Methoden zur Rekonstruktion von Korrelationen zwischen Zustandsschätzungen erforscht. In dieser Arbeit werden Methoden zur dezentralen Nachverfolgung und Rekonstruktion von korrelierten Schätzfehlern diskutiert und weiterentwickelt. Dabei basiert der erste Ansatz auf der Verwendung deterministischer Samples und der zweite auf der Wurzelzerlegung korrelierter Rauschkovarianzen. Um die Verwendbarkeit dieser Methoden zu steigern, werden mehrere wichtige Erweiterungen erarbeitet. Zum Einen schätzen verteilte Sensorknoten häufig den Zustand desselben Systems. Jedoch unterscheiden sie sich in ihrer lokalen Berechnung, indem sie unterschiedliche Zustandsraummodelle nutzen. Ein Beitrag dieser Arbeit ist daher die Verallgemeinerung dezentraler Methoden zur Nachverfolgung in unterschiedlichen (heterogenen) Zustandsräumen gleicher oder geringerer Dimension, die durch lineare Transformationen entstehen. Des Weiteren ist die Rekonstruktion begrenzt auf Systeme mit einem einzigen zentralen Fusionsknoten. Allerdings stellt die Abhängigkeit des Sensornetzwerkes von einem solchen zentralen Knoten einen Schwachpunkt dar, der im Fehlerfall zum vollständigen Ausfall des Netzes führen kann. Zudem verfügen viele Sensornetzwerke über komplexe und variierende Netzwerktopologien ohne zentralen Fusionsknoten. Daher ist eine weitere wichtige Errungenschaft dieser Dissertation die Erweiterung der Methodik auf die Rekonstruktion korrelierter Schätzfehler unabhängig von der genutzten Netzwerkstruktur. Ein Nachteil der erarbeiteten Algorithmen sind die wachsenden Anforderungen an Speicherung, Verarbeitung und Kommunikation der zusätzlichen Informationen, welche für die vollständige Rekonstruktion notwendig sind. Um diesen Mehraufwand zu begrenzen, wird ein Ansatz zur teilweisen Rekonstruktion korrelierter Schätzfehler erarbeitet. Das resultierende partielle Wissen über korrelierte Schätzfehler benötigt eine konservative Abschätzung der Unsicherheit, um genaue und zuverlässige Zustandsschätzungen zu erhalten. Es gibt jedoch Fälle, in denen keine Rekonstruktion der Korrelationen möglich ist oder es eine Menge an möglichen Korrelationen gibt. Dies ist zum Einen der Fall, wenn mehrere Systemmodelle möglich sind. Dies führt dann zu einer Menge möglicher korrelierter Schätzfehler, beispielsweise wenn die Anzahl der lokalen Verarbeitungsschritte bis zur Fusion ungewiss ist. Auf der anderen Seite ist eine Rekonstruktion auch nicht möglich, wenn die Systemparameter nicht bekannt sind oder die Rekonstruktion aufgrund von begrenzter Rechenleistung nicht ausgeführt werden kann. In diesem Fall kann ein Simulationsansatz verwendet werden, um die Korrelationen zu schätzen. In dieser Arbeit werden Ansätze zur Schätzung von Korrelationen zwischen Schätzfehlern basierend auf der Simulation des gesamten Systems erarbeitet. Des Weiteren werden Ansätze zur vollständigen und teilweisen Rekonstruktion einer Menge korrelierter Schätzfehler für mehrere mögliche Systemkonfigurationen entwickelt. Diese Mengen an Korrelationen benötigen entsprechende Berücksichtigung bei der Fusion der Zustandsschätzungen. Daher werden mehrere Ansätze zur konservativen Fusion analysiert und angewendet. Zuletzt wird ein Verfahren basierend auf Gaußmischdichten weiterentwickelt, dass die direkte Verwendung von Mengen an Korrelationen ermöglicht. Die in dieser Dissertation erforschten Methoden bieten sowohl Nutzern als auch Herstellern von verteilten Schätzsystemen einen Baukasten an möglichen Lösungen zur systematischen Behandlung von korrelierten Schätzfehlern. Abhängig von der Art und den Umfang des Wissens über Korrelationen, der Kommunikationsbandbreite sowie der gewünschten Qualität der fusionierten Schätzung kann eine Methode passgenau aus den beschriebenen Methoden zusammengesetzt und angewendet werden. Die somit geschlossene Lücke in der Literatur eröffnet neue Möglichkeiten für verteilte Sensorsysteme in verschiedenen Anwendungsgebieten

    Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    Get PDF
    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy

    Nonlinear State Estimation Using Optimal Gaussian Sampling with Applications to Tracking

    Get PDF
    This thesis is concerned with the ubiquitous problem of estimating the hidden state of a discrete-time stochastic nonlinear dynamic system. The focus is on the derivation of new Gaussian state estimators and the improvement of existing approaches. Also the challenging task of distributed state estimation is addressed by proposing a sample-based fusion of local state estimates. The proposed estimation techniques are applied to extended object tracking

    Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics

    Get PDF
    For spacecraft conducting on-orbit operations, changes to the structure of the spacecraft are not uncommon. These planned or unanticipated changes in inertia properties couple with the spacecraft\u27s attitude dynamics and typically require estimation. For systems with time-varying inertia parameters, multiple model adaptive estimation (MMAE) routines can be utilized for parameter and state estimates. MMAE algorithms involve constructing a bank of recursive estimators, each assuming a different hypothesis for the systems dynamics. This research has three distinct, but related, contributions to satellite attitude dynamics and estimation. In the first part of this research, MMAE routines employing parallel banks of unscented attitude filters are applied to analytical models of spacecraft with time-varying mass moments of inertia (MOI), with the objective of estimating the MOI and classifying the spacecraft\u27s behavior. New adaptive estimation techniques were either modified or developed that can detect discontinuities in MOI up to 98 of the time in the specific problem scenario.Second, heuristic optimization techniques and numerical methods are applied to Wahba\u27s single-frame attitude estimation problem,decreasing computation time by an average of nearly 67 . Finally, this research poses MOI estimation as an ODE parameter identification problem, achieving successful numerical estimates through shooting methods and exploiting the polhodes of rigid body motion with results, on average, to be within 1 to 5 of the true MOI values
    • …
    corecore