15,520 research outputs found

    Advances in Sensors Applied to Agriculture and Forestry

    Get PDF
    In agriculture and forestry, the need to increase production and the simultaneous efforts to minimize the environmental impact of agricultural production processes and save costs find in sensor systems the best allied tool. The use of sensors helps exploit all available resources appropriately and to apply hazardous products moderately. When nutrients in the soil, humidity, solar radiation, density of weeds and a broad set of factors and data affecting the production are known, this situation improves and the use of chemical products such as fertilizers, herbicides and other pollutants can be reduced considerably. Part of this knowledge allows also monitoring photosynthetic parameters of high relevance for photosynthesis. Most of the associated activities fall within the scope of what it is called Precision Agriculture, an emerging area receiving special attention in recent years. [...

    Tractor cabin ergonomics analyses by means of Kinect motion capture technology

    Get PDF
    Kinect is the de facto standard for real-time depth sensing and motion capture cameras. The sensor is here proposed for exploiting body tracking during driving operations. The motion capture system was developed taking advantage of the Microsoft software development kit (SDK), and implemented for real-time monitoring of body movements of a beginner and an expert tractor drivers, on different tracks (straight and with curves) and with different driving conditions (manual and assisted steering). Tests show how analyses can be done not only in terms of absolute movements, but also in terms of relative shifts, allowing for quantification of angular displacements or rotations

    Remote sensing technology applications in forestry and REDD+

    Get PDF
    Advances in close-range and remote sensing technologies drive innovations in forest resource assessments and monitoring at varying scales. Data acquired with airborne and spaceborne platforms provide us with higher spatial resolution, more frequent coverage and increased spectral information. Recent developments in ground-based sensors have advanced three dimensional (3D) measurements, low-cost permanent systems and community-based monitoring of forests. The REDD+ mechanism has moved the remote sensing community in advancing and developing forest geospatial products which can be used by countries for the international reporting and national forest monitoring. However, there still is an urgent need to better understand the options and limitations of remote and close-range sensing techniques in the field of degradation and forest change assessment. This Special Issue contains 12 studies that provided insight into new advances in the field of remote sensing for forest management and REDD+. This includes developments into algorithm development using satellite data; synthetic aperture radar (SAR); airborne and terrestrial LiDAR; as well as forest reference emissions level (FREL) frameworks

    Towards Declarative Safety Rules for Perception Specification Architectures

    Full text link
    Agriculture has a high number of fatalities compared to other blue collar fields, additionally population decreasing in rural areas is resulting in decreased work force. These issues have resulted in increased focus on improving efficiency of and introducing autonomy in agriculture. Field robots are an increasingly promising branch of robotics targeted at full automation in agriculture. The safety aspect however is rely addressed in connection with safety standards, which limits the real-world applicability. In this paper we present an analysis of a vision pipeline in connection with functional-safety standards, in order to propose solutions for how to ascertain that the system operates as required. Based on the analysis we demonstrate a simple mechanism for verifying that a vision pipeline is functioning correctly, thus improving the safety in the overall system.Comment: Presented at DSLRob 2015 (arXiv:1601.00877

    Last generation instrument for agriculture multispectral data collection

    Get PDF
    In recent years, the acquisition and analysis of multispectral data are gaining a growing interest and importance in agriculture. On the other hand, new technologies are opening up for the possibility of developing and implementing sensors with relatively small size and featuring high technical performances. Thanks to low weights and high signal to noise ratios, such sensors can be transported by different type of means (terrestrial as well as aerial vehicles), giving new opportunities for assessment and monitoring of several crops at different growing stages or health conditions. The choice and specialization of individual bands within the electromagnetic spectrum ranging from the ultraviolet to the infrared, plays a fundamental role in the definition of the so-called vegetation indices (eg. NDVI, GNDVI, SAVI, and dozens of others), posing new questions and challenges in their effective implementation. The present paper firstly discusses the needs of low-distance based sensors for indices calculation, then focuses on development of a new multispectral instrument specially developed for agricultural multispectral analysis. Such instrument features high frequency and high resolution imaging through nine different sensors (1 RGB and 8 monochromes with relative band-pass filters, covering the 390 to 950 nm range). The instrument allows synchronized multiband imaging thanks to integrated global shutter technology, with a frame rate up to 5 Hz; exposure time can be as low as 1/5000 s. An applicative case study is eventually reported on an area featuring different materials (organic and non-organic), to show the new instrument potential. Last generation instrument for agriculture multispectral data collection. Available from: https://www.researchgate.net/publication/317596952_Last_generation_instrument_for_agriculture_multispectral_data_collection [accessed Jul 11, 2017]
    • …
    corecore