6 research outputs found

    Self-Adjusting Reject Options in Prototype Based Classification

    No full text
    Villmann T, Kaden M, Bohnsack A, et al. Self-Adjusting Reject Options in Prototype Based Classification. In: Merényi E, Mendenhall MJ, O'Driscoll P, eds. Advances in Self-Organizing Maps and Learning Vector Quantization - Proceedings of the 11th International Workshop WSOM 2016, Houston, Texas, USA, January 6-8, 2016. Advances in Intelligent Systems and Computing. Vol 428. Cham: Springer International Publishing; 2016: 269-279

    Learning vector quantization and relevances in complex coefficient space

    Get PDF
    In this contribution, we consider the classification of time series and similar functional data which can be represented in complex Fourier and wavelet coefficient space. We apply versions of learning vector quantization (LVQ) which are suitable for complex-valued data, based on the so-called Wirtinger calculus. It allows for the formulation of gradient-based update rules in the framework of cost-function-based generalized matrix relevance LVQ (GMLVQ). Alternatively, we consider the concatenation of real and imaginary parts of Fourier coefficients in a real-valued feature vector and the classification of time-domain representations by means of conventional GMLVQ. In addition, we consider the application of the method in combination with wavelet-space features to heartbeat classification

    Spiking neurons in 3D growing self-organising maps

    Get PDF
    In Kohonen’s Self-Organising Maps (SOM) learning, preserving the map topology to simulate the actual input features appears to be a significant process. Misinterpretation of the training samples can lead to failure in identifying the important features that may affect the outcomes generated by the SOM model. Nonetheless, it is a challenging task as most of the real problems are composed of complex and insufficient data. Spiking Neural Network (SNN) is the third generation of Artificial Neural Network (ANN), in which information can be transferred from one neuron to another using spike, processed, and trigger response as output. This study, hence, embedded spiking neurons for SOM learning in order to enhance the learning process. The proposed method was divided into five main phases. Phase 1 investigated issues related to SOM learning algorithm, while in Phase 2; datasets were collected for analyses carried out in Phase 3, wherein neural coding scheme for data representation process was implemented in the classification task. Next, in Phase 4, the spiking SOM model was designed, developed, and evaluated using classification accuracy rate and quantisation error. The outcomes showed that the proposed model had successfully attained exceptional classification accuracy rate with low quantisation error to preserve the quality of the generated map based on original input data. Lastly, in the final phase, a Spiking 3D Growing SOM is proposed to address the surface reconstruction issue by enhancing the spiking SOM using 3D map structure in SOM algorithm with a growing grid mechanism. The application of spiking neurons to enhance the performance of SOM is relevant in this study due to its ability to spike and to send a reaction when special features are identified based on its learning of the presented datasets. The study outcomes contribute to the enhancement of SOM in learning the patterns of the datasets, as well as in proposing a better tool for data analysis

    Alteration of brain network topology in HIV-associated neurocognitive disorder: A novel functional connectivity perspective

    Get PDF
    HIV is capable of invading the brain soon after seroconversion. This ultimately can lead to deficits in multiple cognitive domains commonly referred to as HIV-associated neurocognitive disorders (HAND). Clinical diagnosis of such deficits requires detailed neuropsychological assessment but clinical signs may be difficult to detect during asymptomatic injury of the central nervous system (CNS). Therefore neuroimaging biomarkers are of particular interest in HAND. In this study, we constructed brain connectivity profiles of 40 subjects (20 HIV positive subjects and 20 age-matched seronegative controls) using two different methods: a non-linear mutual connectivity analysis approach and a conventional method based on Pearson's correlation. These profiles were then summarized using graph-theoretic methods characterizing their topological network properties. Standard clinical and laboratory assessments were performed and a battery of neuropsychological (NP) tests was administered for all participating subjects. Based on NP testing, 14 of the seropositive subjects exhibited mild neurologic impairment. Subsequently, we analyzed associations between the network derived measures and neuropsychological assessment scores as well as common clinical laboratory plasma markers (CD4 cell count, HIV RNA) after adjusting for age and gender. Mutual connectivity analysis derived graph-theoretic measures, Modularity and Small Worldness, were significantly (p < 0.05, FDR adjusted) associated with the Executive as well as Overall z-score of NP performance. In contrast, network measures derived from conventional correlation-based connectivity did not yield any significant results. Thus, changes in connectivity can be captured using advanced time-series analysis techniques. The demonstrated associations between imaging-derived graph-theoretic properties of brain networks with neuropsychological performance, provides opportunities to further investigate the evolution of HAND in larger, longitudinal studies. Our analysis approach, involving non-linear time-series analysis in conjunction with graph theory, is promising and it may prove to be useful not only in HAND but also in other neurodegenerative disorders

    Projection-Based Clustering through Self-Organization and Swarm Intelligence

    Get PDF
    It covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm (DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures. The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining

    Projection-Based Clustering through Self-Organization and Swarm Intelligence: Combining Cluster Analysis with the Visualization of High-Dimensional Data

    Get PDF
    Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing; Self-Organization; Emergence; Game Theory; Advanced Analytics; High-Dimensional Data; Multivariate Data; Analysis of Structured Dat
    corecore