1,276 research outputs found

    An axiomatic approach for solving geometric problems symbolically

    Get PDF
    technical reportThis paper describes a new approach for solving geometric constraint problems and problems in geometry theorem proving. We developed a rewrite-rule mechanism operating on geometric predicates. Termination and completeness of the problem solving algorithm can be obtained through well foundedness and confluence of the set of rewrite rules. To guarantee these properties we adapted the Knuth-Bendix completion algorithm to the specific requirements of the geometric problem. A symbolic, geometric solution has the advantage over the usual algebraic approach that it speaks the language of geometry. Therefore, it has the potential to be used in many practical applications in interactive Computer Aided Design

    Learning programs by learning from failures

    Full text link
    We describe an inductive logic programming (ILP) approach called learning from failures. In this approach, an ILP system (the learner) decomposes the learning problem into three separate stages: generate, test, and constrain. In the generate stage, the learner generates a hypothesis (a logic program) that satisfies a set of hypothesis constraints (constraints on the syntactic form of hypotheses). In the test stage, the learner tests the hypothesis against training examples. A hypothesis fails when it does not entail all the positive examples or entails a negative example. If a hypothesis fails, then, in the constrain stage, the learner learns constraints from the failed hypothesis to prune the hypothesis space, i.e. to constrain subsequent hypothesis generation. For instance, if a hypothesis is too general (entails a negative example), the constraints prune generalisations of the hypothesis. If a hypothesis is too specific (does not entail all the positive examples), the constraints prune specialisations of the hypothesis. This loop repeats until either (i) the learner finds a hypothesis that entails all the positive and none of the negative examples, or (ii) there are no more hypotheses to test. We introduce Popper, an ILP system that implements this approach by combining answer set programming and Prolog. Popper supports infinite problem domains, reasoning about lists and numbers, learning textually minimal programs, and learning recursive programs. Our experimental results on three domains (toy game problems, robot strategies, and list transformations) show that (i) constraints drastically improve learning performance, and (ii) Popper can outperform existing ILP systems, both in terms of predictive accuracies and learning times.Comment: Accepted for the machine learning journa

    The problem of induction and Artificial Intelligence

    Get PDF

    Architectures for reasoning in parallel

    Get PDF
    The research conducted has dealt with rule-based expert systems. The algorithms that may lead to effective parallelization of them were investigated. Both the forward and backward chained control paradigms were investigated in the course of this work. The best computer architecture for the developed and investigated algorithms has been researched. Two experimental vehicles were developed to facilitate this research. They are Backpac, a parallel backward chained rule-based reasoning system and Datapac, a parallel forward chained rule-based reasoning system. Both systems have been written in Multilisp, a version of Lisp which contains the parallel construct, future. Applying the future function to a function causes the function to become a task parallel to the spawning task. Additionally, Backpac and Datapac have been run on several disparate parallel processors. The machines are an Encore Multimax with 10 processors, the Concert Multiprocessor with 64 processors, and a 32 processor BBN GP1000. Both the Concert and the GP1000 are switch-based machines. The Multimax has all its processors hung off a common bus. All are shared memory machines, but have different schemes for sharing the memory and different locales for the shared memory. The main results of the investigations come from experiments on the 10 processor Encore and the Concert with partitions of 32 or less processors. Additionally, experiments have been run with a stripped down version of EMYCIN

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    End-User programming in mobile devices through reusable visual components composition

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    αCheck: a mechanized metatheory model-checker

    Get PDF
    The problem of mechanically formalizing and proving metatheoretic properties of programming language calculi, type systems, operational semantics, and related formal systems has received considerable attention recently. However, the dual problem of searching for errors in such formalizations has attracted comparatively little attention. In this article, we present α\alphaCheck, a bounded model-checker for metatheoretic properties of formal systems specified using nominal logic. In contrast to the current state of the art for metatheory verification, our approach is fully automatic, does not require expertise in theorem proving on the part of the user, and produces counterexamples in the case that a flaw is detected. We present two implementations of this technique, one based on negation-as-failure and one based on negation elimination, along with experimental results showing that these techniques are fast enough to be used interactively to debug systems as they are developed.Comment: Under consideration for publication in Theory and Practice of Logic Programming (TPLP

    REA2: A unified formalisation of the Resource-Event-Agent Ontology

    Get PDF
    Through a proof of concept in SWI-Prolog, this paper demonstrates a business transaction model by which the trading partners can derive their own, personal perspective from shared data. The demonstration is an innovative formalisation of the Resource-Event-Agent (REA) ontology as it allows for switching viewpoints in real-time between one trading-partner’s perspective and that of a trading-partner with an opposing view (i.e. customer or supplier), or a trading-partner independent perspective (e.g. trusted third-party). The business transaction model is achieved by uniting REA with the Open-EDI Business Transaction Ontology (OeBTO). The resulting unified formalisation of the REA ontology (REA2) also highlights implications for the future development of a) enterprise information systems (EIS) in the cloud, b) social-mediabased EIS, c) blockchain EIS, and d) EIS interoperability across business paradigms. The EIS interoperability such as between traditional EIS (which typically uses a tradingpartner perspective), and EIS for the collaborative economy (which typically uses a trading-partner independent perspective) is particularly highlighted as it becomes much more transparent than previously
    • …
    corecore