8 research outputs found

    Data-Driven Audio Feature Space Clustering for Automatic Sound Recognition in Radio Broadcast News

    Get PDF
    This is an Open Access article published by World Scientific Publishing Company. It is distributed under the terms of the Creative Commons Attribution 4.0 (CC-BY) License. Further distribution of this work is permitted, provided the original work is properly cited. T. Theodorou, I. Mpoas, A. Lazaridis, N. Fakotakis, 'Data-Driven Audio Feature Space Clustering for Automatic Sound Recognition in Radio Broadcast News', International Journal on Artificial Intelligence Tools, Vol. 26 (2), April 2017, 1750005 (13 pages), DOI: 10.1142/S021821301750005. © The Author(s).In this paper we describe an automatic sound recognition scheme for radio broadcast news based on principal component clustering with respect to the discrimination ability of the principal components. Specifically, streams of broadcast news transmissions, labeled based on the audio event, are decomposed using a large set of audio descriptors and project into the principal component space. A data-driven algorithm clusters the relevance of the components. The component subspaces are used by sound type classifier. This methodology showed that the k-nearest neighbor and the artificial intelligent network provide good results. Also, this methodology showed that discarding unnecessary dimension works in favor on the outcome, as it hardly deteriorates the effectiveness of the algorithms.Peer reviewe

    Multimodal machine learning for intelligent mobility

    Get PDF
    Scientific problems are solved by finding the optimal solution for a specific task. Some problems can be solved analytically while other problems are solved using data driven methods. The use of digital technologies to improve the transportation of people and goods, which is referred to as intelligent mobility, is one of the principal beneficiaries of data driven solutions. Autonomous vehicles are at the heart of the developments that propel Intelligent Mobility. Due to the high dimensionality and complexities involved in real-world environments, it needs to become commonplace for intelligent mobility to use data-driven solutions. As it is near impossible to program decision making logic for every eventuality manually. While recent developments of data-driven solutions such as deep learning facilitate machines to learn effectively from large datasets, the application of techniques within safety-critical systems such as driverless cars remain scarce.Autonomous vehicles need to be able to make context-driven decisions autonomously in different environments in which they operate. The recent literature on driverless vehicle research is heavily focused only on road or highway environments but have discounted pedestrianized areas and indoor environments. These unstructured environments tend to have more clutter and change rapidly over time. Therefore, for intelligent mobility to make a significant impact on human life, it is vital to extend the application beyond the structured environments. To further advance intelligent mobility, researchers need to take cues from multiple sensor streams, and multiple machine learning algorithms so that decisions can be robust and reliable. Only then will machines indeed be able to operate in unstructured and dynamic environments safely. Towards addressing these limitations, this thesis investigates data driven solutions towards crucial building blocks in intelligent mobility. Specifically, the thesis investigates multimodal sensor data fusion, machine learning, multimodal deep representation learning and its application of intelligent mobility. This work demonstrates that mobile robots can use multimodal machine learning to derive driver policy and therefore make autonomous decisions.To facilitate autonomous decisions necessary to derive safe driving algorithms, we present an algorithm for free space detection and human activity recognition. Driving these decision-making algorithms are specific datasets collected throughout this study. They include the Loughborough London Autonomous Vehicle dataset, and the Loughborough London Human Activity Recognition dataset. The datasets were collected using an autonomous platform design and developed in house as part of this research activity. The proposed framework for Free-Space Detection is based on an active learning paradigm that leverages the relative uncertainty of multimodal sensor data streams (ultrasound and camera). It utilizes an online learning methodology to continuously update the learnt model whenever the vehicle experiences new environments. The proposed Free Space Detection algorithm enables an autonomous vehicle to self-learn, evolve and adapt to new environments never encountered before. The results illustrate that online learning mechanism is superior to one-off training of deep neural networks that require large datasets to generalize to unfamiliar surroundings. The thesis takes the view that human should be at the centre of any technological development related to artificial intelligence. It is imperative within the spectrum of intelligent mobility where an autonomous vehicle should be aware of what humans are doing in its vicinity. Towards improving the robustness of human activity recognition, this thesis proposes a novel algorithm that classifies point-cloud data originated from Light Detection and Ranging sensors. The proposed algorithm leverages multimodality by using the camera data to identify humans and segment the region of interest in point cloud data. The corresponding 3-dimensional data was converted to a Fisher Vector Representation before being classified by a deep Convolutional Neural Network. The proposed algorithm classifies the indoor activities performed by a human subject with an average precision of 90.3%. When compared to an alternative point cloud classifier, PointNet[1], [2], the proposed framework out preformed on all classes. The developed autonomous testbed for data collection and algorithm validation, as well as the multimodal data-driven solutions for driverless cars, is the major contributions of this thesis. It is anticipated that these results and the testbed will have significant implications on the future of intelligent mobility by amplifying the developments of intelligent driverless vehicles.</div

    Control of Naturally Ventilated Buildings: a Model Predictive Control Approach

    Get PDF
    During operation, buildings consume a large amount of energy, around 40\% of global final energy use. A major challenge is to reduce the amount of energy used while still providing a comfortable environment for building occupants. The use of passive techniques, such as natural ventilation, is promoted in certain climates to provide low energy cooling and ventilation. However, controlling natural ventilation in an effective manner to maintain occupant comfort can be a difficult task, particularly during warm periods. One area which has been identified as having the potential for reducing energy consumption while maintaining occupant comfort is the use of more advanced control techniques. A technique which has been much explored in recent years for application in mechanically ventilated buildings is Model Predictive Control (MPC). MPC is a control technique which uses a model of the system dynamics and by solving an optimisation problem is able to determine the optimal control inputs. In this thesis the application of MPC to naturally-ventilated buildings is investigated. The essential component of an MPC strategy is the predictive model of the building's thermal dynamics. An empirical approach to modelling was taken using multilayer perceptron (MLP) neural network models. To use empirical data from a building to create a predictive model it is essential to ensure the quality of the data is appropriate. In order to assess the data available from buildings during normal operation four studies were carried out in different buildings. The data collected from these studies represent a range of natural ventilation scenarios and building types in different locations in the UK. To test the impact of identification procedures upon the resulting neural network models, an identification experiment was carried out using dynamic thermal simulation. Neural network models were trained using both the data from real buildings and the simulation data. Results showed that neural network models trained using data from real buildings were capable of good predictions. However, the lack of input excitation during normal operation resulted in models which did not capture the effect of the window opening control. The identification experiment demonstrated that by exciting the control input the resulting neural network models captured the effect of the control, making them suitable for MPC. The main focus of this thesis is the investigation of techniques to develop predictive models which can be utilised as part of an MPC strategy. However, to demonstrate the potential benefits of MPC a controller designed to maintain a suitable internal temperature is demonstrated. The controller utilised the neural network models developed using the data from the system identification experiment and a non-linear optimiser. The MPC method showed the potential to reduce overheating and improve upon the typical control used in the majority of buildings. Findings in this thesis demonstrate that empirical models capable of good predictions can be trained and could be successfully applied to the control of natural ventilation systems. Furthermore, the potential advantages of adopting an MPC approach to natural ventilation control are shown

    Data-driven method for enhanced corrosion assessment of reinforced concrete structures

    Get PDF
    Corrosion is a major problem affecting the durability of reinforced concrete structures. Corrosion related maintenance and repair of reinforced concrete structures cost multibillion USD per annum globally. It is often triggered by the ingression of carbon dioxide and/or chloride into the pores of concrete. Estimation of these corrosion causing factors using the conventional models results in suboptimal assessment since they are incapable of capturing the complex interaction of parameters. Hygrothermal interaction also plays a role in aggravating the corrosion of reinforcement bar and this is usually counteracted by applying surface protection systems. These systems have different degree of protection and they may even cause deterioration to the structure unintentionally. The overall objective of this dissertation is to provide a framework that enhances the assessment reliability of the corrosion controlling factors. The framework is realized through the development of data-driven carbonation depth, chloride profile and hygrothermal performance prediction models. The carbonation depth prediction model integrates neural network, decision tree, boosted and bagged ensemble decision trees. The ensemble tree based chloride profile prediction models evaluate the significance of chloride ingress controlling variables from various perspectives. The hygrothermal interaction prediction models are developed using neural networks to evaluate the status of corrosion and other unexpected deteriorations in surface-treated concrete elements. Long-term data for all models were obtained from three different field experiments. The performance comparison of the developed carbonation depth prediction model with the conventional one confirmed the prediction superiority of the data-driven model. The variable importance measure revealed that plasticizers and air contents are among the top six carbonation governing parameters out of 25. The discovered topmost chloride penetration controlling parameters representing the composition of the concrete are aggregate size distribution, amount and type of plasticizers and supplementary cementitious materials. The performance analysis of the developed hygrothermal model revealed its prediction capability with low error. The integrated exploratory data analysis technique with the hygrothermal model had identified the surfaceprotection systems that are able to protect from corrosion, chemical and frost attacks. All the developed corrosion assessment models are valid, reliable, robust and easily reproducible, which assist to define proactive maintenance plan. In addition, the determined influential parameters could help companies to produce optimized concrete mix that is able to resist carbonation and chloride penetration. Hence, the outcomes of this dissertation enable reduction of lifecycle costs

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia
    corecore