30 research outputs found

    Modularity based linkage model for neuroevolution

    Full text link
    Crossover between neural networks is considered disruptive due to the strong functional dependency between connection weights. We propose a modularity-based linkage model at the weight level to preserve functionally dependent communities (building blocks) in neural networks during mixing. A proximity matrix is built by estimating the dependency between weights, then a community detection algorithm maximizing modularity is run on the graph described by such matrix. The resulting communities/groups of parameters are considered to be mutually independent and used as crossover masks in an optimal mixing EA. A variant is tested with an operator that neutralizes the permutation problem of neural networks to a degree. Experiments were performed on 8 and 10-bit parity problems as the intrinsic hierarchical nature of the dependencies in these problems are challenging to learn. The results show that our algorithm finds better, more functionally dependent linkage which leads to more successful crossover and better performance

    FAULT DETECTION AND ISOLATION FOR WIND TURBINE DYNAMIC SYSTEMS

    Get PDF
    This work presents two fault detection and isolation (FDI) approaches for wind turbine systems (WTS). Firstly, a non-linear mathematical model for wind turbine (WT) dynamics is developed. Based on the developed WTS mathematical model, a robust fault detection observer is designed to estimate system faults, so as to generate residuals. The observer is designed to be robust to system disturbance and sensitive to system faults. A WT blade pitch system fault, a drive-train system gearbox fault and three sensor faults are simulated to the nominal system model, and the designed observer is then to detect these faults when the system is subjected to disturbance. The simulation results showed that the simulated faults are successfully detected. In addition, a neural network (NN) method is proposed for WTS fault detection and isolation. Two radial basis function (RBF) networks are employed in this method. The first NN is used to generate the residual from system input/output data. A second NN is used as a classifier to isolate the faults. The classifier is trained to achieve the following target: the output are all “0”s for no fault case; while the output is “1” if the corresponding fault occurs. The performance of the developed neural network FDI method was evaluated using the simulated three sensor faults. The simulation results demonstrated these faults are successfully detected and isolated by the NN classifier

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion

    Advances in independent component analysis and nonnegative matrix factorization

    Get PDF
    A fundamental problem in machine learning research, as well as in many other disciplines, is finding a suitable representation of multivariate data, i.e. random vectors. For reasons of computational and conceptual simplicity, the representation is often sought as a linear transformation of the original data. In other words, each component of the representation is a linear combination of the original variables. Well-known linear transformation methods include principal component analysis (PCA), factor analysis, and projection pursuit. In this thesis, we consider two popular and widely used techniques: independent component analysis (ICA) and nonnegative matrix factorization (NMF). ICA is a statistical method in which the goal is to find a linear representation of nongaussian data so that the components are statistically independent, or as independent as possible. Such a representation seems to capture the essential structure of the data in many applications, including feature extraction and signal separation. Starting from ICA, several methods of estimating the latent structure in different problem settings are derived and presented in this thesis. FastICA as one of most efficient and popular ICA algorithms has been reviewed and discussed. Its local and global convergence and statistical behavior have been further studied. A nonnegative FastICA algorithm is also given in this thesis. Nonnegative matrix factorization is a recently developed technique for finding parts-based, linear representations of non-negative data. It is a method for dimensionality reduction that respects the nonnegativity of the input data while constructing a low-dimensional approximation. The non-negativity constraints make the representation purely additive (allowing no subtractions), in contrast to many other linear representations such as principal component analysis and independent component analysis. A literature survey of Nonnegative matrix factorization is given in this thesis, and a novel method called Projective Nonnegative matrix factorization (P-NMF) and its applications are provided
    corecore