5,449 research outputs found

    Supply chain management: An opportunity for metaheuristics

    Get PDF
    In today’s highly competitive and global marketplace the pressure on organizations to find new ways to create and deliver value to customers grows ever stronger. In the last two decades, logistics and supply chain has moved to the center stage. There has been a growing recognition that it is through an effective management of the logistics function and the supply chain that the goal of cost reduction and service enhancement can be achieved. The key to success in Supply Chain Management (SCM) require heavy emphasis on integration of activities, cooperation, coordination and information sharing throughout the entire supply chain, from suppliers to customers. To be able to respond to the challenge of integration there is the need of sophisticated decision support systems based on powerful mathematical models and solution techniques, together with the advances in information and communication technologies. The industry and the academia have become increasingly interested in SCM to be able to respond to the problems and issues posed by the changes in the logistics and supply chain. We present a brief discussion on the important issues in SCM. We then argue that metaheuristics can play an important role in solving complex supply chain related problems derived by the importance of designing and managing the entire supply chain as a single entity. We will focus specially on the Iterated Local Search, Tabu Search and Scatter Search as the ones, but not limited to, with great potential to be used on solving the SCM related problems. We will present briefly some successful applications.Supply chain management, metaheuristics, iterated local search, tabu search and scatter search

    On the use of reference points for the biobjective Inventory Routing Problem

    Full text link
    The article presents a study on the biobjective inventory routing problem. Contrary to most previous research, the problem is treated as a true multi-objective optimization problem, with the goal of identifying Pareto-optimal solutions. Due to the hardness of the problem at hand, a reference point based optimization approach is presented and implemented into an optimization and decision support system, which allows for the computation of a true subset of the optimal outcomes. Experimental investigation involving local search metaheuristics are conducted on benchmark data, and numerical results are reported and analyzed

    An Efficient Hybrid Ant Colony System for the Generalized Traveling Salesman Problem

    Get PDF
    The Generalized Traveling Salesman Problem (GTSP) is an extension of the well-known Traveling Salesman Problem (TSP), where the node set is partitioned into clusters, and the objective is to find the shortest cycle visiting each cluster exactly once. In this paper, we present a new hybrid Ant Colony System (ACS) algorithm for the symmetric GTSP. The proposed algorithm is a modification of a simple ACS for the TSP improved by an efficient GTSP-specific local search procedure. Our extensive computational experiments show that the use of the local search procedure dramatically improves the performance of the ACS algorithm, making it one of the most successful GTSP metaheuristics to date.Comment: 7 page

    Current Trends in Simheuristics: from smart transportation to agent-based simheuristics

    Get PDF
    Simheuristics extend metaheuristics by adding a simulation layer that allows the optimization component to deal efficiently with scenarios under uncertainty. This presentation reviews both initial as well as recent applications of simheuristics, mainly in the area of logistics and transportation. We also discuss a novel agent-based simheuristic (ABSH) approach that combines simheuristic and multi-agent systems to efficiently solve stochastic combinatorial optimization problems. The presentation is based on papers [1], [2], and [3], which have been already accepted in the prestigious Winter Simulation Conference.Peer ReviewedPostprint (published version

    Review of Metaheuristics and Generalized Evolutionary Walk Algorithm

    Full text link
    Metaheuristic algorithms are often nature-inspired, and they are becoming very powerful in solving global optimization problems. More than a dozen of major metaheuristic algorithms have been developed over the last three decades, and there exist even more variants and hybrid of metaheuristics. This paper intends to provide an overview of nature-inspired metaheuristic algorithms, from a brief history to their applications. We try to analyze the main components of these algorithms and how and why they works. Then, we intend to provide a unified view of metaheuristics by proposing a generalized evolutionary walk algorithm (GEWA). Finally, we discuss some of the important open questions.Comment: 14 page

    A statistical learning based approach for parameter fine-tuning of metaheuristics

    Get PDF
    Metaheuristics are approximation methods used to solve combinatorial optimization problems. Their performance usually depends on a set of parameters that need to be adjusted. The selection of appropriate parameter values causes a loss of efficiency, as it requires time, and advanced analytical and problem-specific skills. This paper provides an overview of the principal approaches to tackle the Parameter Setting Problem, focusing on the statistical procedures employed so far by the scientific community. In addition, a novel methodology is proposed, which is tested using an already existing algorithm for solving the Multi-Depot Vehicle Routing Problem.Peer ReviewedPostprint (published version

    The crew-scheduling module in the GIST system

    Get PDF
    The public transportation is gaining importance every year basically due the population growth, environmental policies and, route and street congestion. Too able an efficient management of all the resources related to public transportation, several techniques from different areas are being applied and several projects in Transportation Planning Systems, in different countries, are being developed. In this work, we present the GIST Planning Transportation Systems, a Portuguese project involving two universities and six public transportation companies. We describe in detail one of the most relevant modules of this project, the crew-scheduling module. The crew-scheduling module is based on the application of meta-heuristics, in particular GRASP, tabu search and genetic algorithm to solve the bus-driver-scheduling problem. The metaheuristics have been successfully incorporated in the GIST Planning Transportation Systems and are actually used by several companies.Integrated transportation systems, crew scheduling, metaheuristics
    • 

    corecore