3 research outputs found

    Improving Key-Recovery in Linear Attacks: Application to 28-Round PRESENT

    Get PDF
    International audienceLinear cryptanalysis is one of the most important tools in usefor the security evaluation of symmetric primitives. Many improvementsand refinements have been published since its introduction, and manyapplications on different ciphers have been found. Among these upgrades,Collard et al. proposed in 2007 an acceleration of the key-recovery partof Algorithm 2 for last-round attacks based on the FFT.In this paper we present a generalized, matrix-based version of the pre-vious algorithm which easily allows us to take into consideration an ar-bitrary number of key-recovery rounds. We also provide efficient variantsthat exploit the key-schedule relations and that can be combined withmultiple linear attacks.Using our algorithms we provide some new cryptanalysis on PRESENT,including, to the best of our knowledge, the first attack on 28 rounds

    Multiple-Differential Mechanism for Collision-Optimized Divide-and-Conquer Attacks

    Get PDF
    Several combined attacks have shown promising results in recovering cryptographic keys by introducing collision information into divide-and-conquer attacks to transform a part of the best key candidates within given thresholds into a much smaller collision space. However, these Collision-Optimized Divide-and-Conquer Attacks (CODCAs) uniformly demarcate the thresholds for all sub-keys, which is unreasonable. Moreover, the inadequate exploitation of collision information and backward fault tolerance mechanisms of CODCAs also lead to low attack efficiency. Finally, existing CODCAs mainly focus on improving collision detection algorithms but lack theoretical basis. We exploit Correlation-Enhanced Collision Attack (CECA) to optimize Template Attack (TA). To overcome the above-mentioned problems, we first introduce guessing theory into TA to enable the quick estimation of success probability and the corresponding complexity of key recovery. Next, a novel Multiple-Differential mechanism for CODCAs (MD-CODCA) is proposed. The first two differential mechanisms construct collision chains satisfying the given number of collisions from several sub-keys with the fewest candidates under a fixed probability provided by guessing theory, then exploit them to vote for the remaining sub-keys. This guarantees that the number of remaining chains is minimal, and makes MD-CODCA suitable for very high thresholds. Our third differential mechanism simply divides the key into several large non-overlapping ``blocks\u27\u27 to further exploit intra-block collisions from the remaining candidates and properly ignore the inter-block collisions, thus facilitating the latter key enumeration. The experimental results show that MD-CODCA significantly reduces the candidate space and lowers the complexity of collision detection, without considerably reducing the success probability of attacks
    corecore