160,936 research outputs found

    3D objective quality assessment of light field video frames

    Get PDF
    With the rapid advances in light field displays and cameras, research in light field content creation, visualization, coding and quality assessment is now beyond a state of emergence; it has already emerged and started attracting a significant part of the scientific community. The capability of light field displays to offer glasses-free 3D experience simultaneously for multiple users has opened new avenues in subjective and objective quality assessment of light field image content, and video is also becoming research target of such quality evaluation methods. Yet it needs to be stated that while static light field contents have evidently received relatively more attention, the research on light field video content still remains largely unexplored. In this paper, we present results of the objective quality assessment of key frames extracted from light field video content. To this end, we use our own full-reference 3D objective quality metric

    Zero-shot super-resolution with a physically-motivated downsampling kernel for endomicroscopy

    Get PDF
    Super-resolution (SR) methods have seen significant advances thanks to the development of convolutional neural networks (CNNs). CNNs have been successfully employed to improve the quality of endomicroscopy imaging. Yet, the inherent limitation of research on SR in endomicroscopy remains the lack of ground truth high-resolution (HR) images, commonly used for both supervised training and reference-based image quality assessment (IQA). Therefore, alternative methods, such as unsupervised SR are being explored. To address the need for non-reference image quality improvement, we designed a novel zero-shot super-resolution (ZSSR) approach that relies only on the endomicroscopy data to be processed in a self-supervised manner without the need for ground-truth HR images. We tailored the proposed pipeline to the idiosyncrasies of endomicroscopy by introducing both: a physically-motivated Voronoi downscaling kernel accounting for the endomicroscope’s irregular fibre-based sampling pattern, and realistic noise patterns. We also took advantage of video sequences to exploit a sequence of images for self-supervised zero-shot image quality improvement. We run ablation studies to assess our contribution in regards to the downscaling kernel and noise simulation. We validate our methodology on both synthetic and original data. Synthetic experiments were assessed with reference-based IQA, while our results for original images were evaluated in a user study conducted with both expert and non-expert observers. The results demonstrated superior performance in image quality of ZSSR reconstructions in comparison to the baseline method. The ZSSR is also competitive when compared to supervised single-image SR, especially being the preferred reconstruction technique by experts

    A reduced-reference perceptual image and video quality metric based on edge preservation

    Get PDF
    In image and video compression and transmission, it is important to rely on an objective image/video quality metric which accurately represents the subjective quality of processed images and video sequences. In some scenarios, it is also important to evaluate the quality of the received video sequence with minimal reference to the transmitted one. For instance, for quality improvement of video transmission through closed-loop optimisation, the video quality measure can be evaluated at the receiver and provided as feedback information to the system controller. The original image/video sequence-prior to compression and transmission-is not usually available at the receiver side, and it is important to rely at the receiver side on an objective video quality metric that does not need reference or needs minimal reference to the original video sequence. The observation that the human eye is very sensitive to edge and contour information of an image underpins the proposal of our reduced reference (RR) quality metric, which compares edge information between the distorted and the original image. Results highlight that the metric correlates well with subjective observations, also in comparison with commonly used full-reference metrics and with a state-of-the-art RR metric. © 2012 Martini et al

    Impact of GoP on the video quality of VP9 compression standard for full HD resolution

    Get PDF
    In the last years, the interest on multimedia services has significantly increased. This leads to requirements for quality assessment, especially in video domain. Compression together with the transmission link imperfection are two main factors that influence the quality. This paper deals with the assessment of the Group of Pictures (GoP) impact on the video quality of VP9 compression standard. The evaluation was done using selected objective and subjective methods for two types of Full HD sequences depending on content. These results are part of a new model that is still being created and will be used for predicting the video quality in networks based on IP

    Perceived quality of full HD video - subjective quality assessment

    Get PDF
    In recent years, an interest in multimedia services has become a global trend and this trend is still rising. The video quality is a very significant part from the bundle of multimedia services, which leads to a requirement for quality assessment in the video domain. Video quality of a streamed video across IP networks is generally influenced by two factors “transmission link imperfection and efficiency of compression standards. This paper deals with subjective video quality assessment and the impact of the compression standards H.264, H.265 and VP9 on perceived video quality of these compression standards. The evaluation is done for four full HD sequences, the difference of scenes is in the content“ distinction is based on Spatial (SI) and Temporal (TI) Index of test sequences. Finally, experimental results follow up to 30% bitrate reducing of H.265 and VP9 compared with the reference H.264

    Learning Single-Image Depth from Videos using Quality Assessment Networks

    Full text link
    Depth estimation from a single image in the wild remains a challenging problem. One main obstacle is the lack of high-quality training data for images in the wild. In this paper we propose a method to automatically generate such data through Structure-from-Motion (SfM) on Internet videos. The core of this method is a Quality Assessment Network that identifies high-quality reconstructions obtained from SfM. Using this method, we collect single-view depth training data from a large number of YouTube videos and construct a new dataset called YouTube3D. Experiments show that YouTube3D is useful in training depth estimation networks and advances the state of the art of single-view depth estimation in the wild
    corecore