326,601 research outputs found

    Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Get PDF
    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed

    New Zealand Building Project Cost and Its Influential Factors: A Structural Equation Modelling Approach

    Get PDF
    Construction industry significantly contributes to New Zealand's economic development. However, the delivery of construction projects is usually plagued by cost overruns, which turn potentially successful projects into money-losing ventures, resulting in various other unexpected negative impacts. The objectives of the study were to identify, classify, and assess the impacts of the factors affecting project cost in New Zealand. The proposed research model was examined with structural equation modelling. Recognising the lack of a systematic approach for assessing the influencing factors associated with project cost, this study identified 30 influencing factors from various sources and quantified their relative impacts. The research data were gathered through a questionnaire survey circulated across New Zealand construction industry. A total of 283 responses were received, with a 37% response rate. A model was developed for testing the relationship between project cost and the influential factors. The proposed research model was examined with structural equation modelling (SEM). According to the results of the analysis, market and industry conditions factor has the most significant effect on project cost, while regulatory regime is the second-most significant influencing factor, followed by key stakeholders' perspectives. The findings can improve project cost performance through the identification and evaluation of the cost-influencing factors. The results of such analysis enable industry professionals to better understand cost-related risks in the complex environment

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure

    Search-based amorphous slicing

    Get PDF
    Amorphous slicing is an automated source code extraction technique with applications in many areas of software engineering, including comprehension, reuse, testing and reverse engineering. Algorithms for syntax-preserving slicing are well established, but amorphous slicing is harder because it requires arbitrary transformation; finding good general purpose amorphous slicing algorithms therefore remains as hard as general program transformation. In this paper we show how amorphous slices can be computed using search techniques. The paper presents results from a set of experiments designed to explore the application of genetic algorithms, hill climbing, random search and systematic search to a set of six subject programs. As a benchmark, the results are compared to those from an existing analytical algorithm for amorphous slicing, which was written specifically to perform well with the sorts of program under consideration. The results, while tentative at this stage, do give grounds for optimism. The search techniques proved able to reduce the size of the programs under consideration in all cases, sometimes equaling the performance of the specifically-tailored analytic algorithm. In one case, the search techniques performed better, highlighting a fault in the existing algorith

    Cuff-less continuous blood pressure monitoring system using pulse transit time techniques

    Get PDF
    This paper describes the development of a continuous cuff-less blood pressure system based on the pulse transit time (PTT) technique. In this study, PTT is defined by two different approaches denoted as PTT1 and PTT2. PTT1 is the time difference between the R-wave peak of the Electrocardiogram (ECG) and the peak of the Photoplethysmogram (PPG). PTT2 is the time difference between two peak PPG signals on same cardiac cycle at different positions on the body. The ECG is acquired on the chest using 3 lead electrodes and a reflection mode optical sensor is deployed on brachial artery and fingertip to monitor the PPGs. These data were synchronized using a National Instruments data acquisition card along with Matlab software for subsequent analysis. A wrist-type cuff-based blood pressure device was used to measure blood pressure on the right hand. Brachial blood pressure was measured on the upper left arm using oscillometric blood pressure monitor. Experiments were conducted by elevating the right hand at different position to investigate variability of PTT under the effects of hydrostatic pressure. Next the variability of PTT due to blood pressure changes during a Valsalva maneuver was investigated. The result shows that the PTT1 is inversely proportional to blood pressure in both experiments. Meanwhile, there is weak correlation between PTT2 and blood pressure measurement which suggests that by excluding the pre-ejection period (PEP) time in PTT calculation may reduce the accuracy of PTT for blood pressure measurement. In conclusion, PTT measurement between ECG and PPG signals has potential to be a reliable technique for cuff-less blood pressure measurement
    corecore