21,960 research outputs found

    Componential coding in the condition monitoring of electrical machines Part 2: application to a conventional machine and a novel machine

    Get PDF
    This paper (Part 2) presents the practical application of componential coding, the principles of which were described in the accompanying Part 1 paper. Four major issues are addressed, including optimization of the neural network, assessment of the anomaly detection results, development of diagnostic approaches (based on the reconstruction error) and also benchmarking of componential coding with other techniques (including waveform measures, Fourier-based signal reconstruction and principal component analysis). This is achieved by applying componential coding to the data monitored from both a conventional induction motor and from a novel transverse flux motor. The results reveal that machine condition monitoring using componential coding is not only capable of detecting and then diagnosing anomalies but it also outperforms other conventional techniques in that it is able to separate very small and localized anomalies

    Failure mode identification and end of life scenarios of offshore wind turbines: a review

    Get PDF
    In 2007, the EU established challenging goals for all Member States with the aim of obtaining 20% of their energy consumption from renewables, and offshore wind is expected to be among the renewable energy sources contributing highly towards achieving this target. Currently wind turbines are designed for a 25-year service life with the possibility of operational extension. Extending their efficient operation and increasing the overall electricity production will significantly increase the return on investment (ROI) and decrease the levelized cost of electricity (LCOE), considering that Capital Expenditure (CAPEX) will be distributed over a larger production output. The aim of this paper is to perform a detailed failure mode identification throughout the service life of offshore wind turbines and review the three most relevant end of life (EOL) scenarios: life extension, repowering and decommissioning. Life extension is considered the most desirable EOL scenario due to its profitability. It is believed that combining good inspection, operations and maintenance (O&M) strategies with the most up to date structural health monitoring and condition monitoring systems for detecting previously identified failure modes, will make life extension feasible. Nevertheless, for the cases where it is not feasible, other options such as repowering or decommissioning must be explored

    A new method of accurate broken rotor bar diagnosis based on modulation signal bispectrum analysis of motor current signals

    Get PDF
    Motor current signature analysis (MCSA) has been an effective way of monitoring electrical machines for many years. However, inadequate accuracy in diagnosing incipient broken rotor bars (BRB) has motivated many studies into improving this method. In this paper a modulation signal bispectrum (MSB) analysis is applied to motor currents from different broken bar cases and a new MSB based sideband estimator (MSB-SE) and sideband amplitude estimator are introduced for obtaining the amplitude at (1±2s)fs(1±2s)fs (s is the rotor slip and fsfs is the fundamental supply frequency) with high accuracy. As the MSB-SE has a good performance of noise suppression, the new estimator produces more accurate results in predicting the number of BRB, compared with conventional power spectrum analysis. Moreover, the paper has also developed an improved model for motor current signals under rotor fault conditions and an effective method to decouple the BRB current which interferes with that of speed oscillations associated with BRB. These provide theoretical supports for the new estimators and clarify the issues in using conventional bispectrum analysis

    Multiple-fault detection methodology based on vibration and current analysis applied to bearings in induction motors and gearboxes on the kinematic chain

    Get PDF
    © 2016 Juan Jose Saucedo-Dorantes et al. Gearboxes and induction motors are important components in industrial applications and their monitoring condition is critical in the industrial sector so as to reduce costs and maintenance downtimes. There are several techniques associated with the fault diagnosis in rotating machinery; however, vibration and stator currents analysis are commonly used due to their proven reliability. Indeed, vibration and current analysis provide fault condition information by means of the fault-related spectral component identification. This work presents a methodology based on vibration and current analysis for the diagnosis of wear in a gearbox and the detection of bearing defect in an induction motor both linked to the same kinematic chain; besides, the location of the fault-related components for analysis is supported by the corresponding theoretical models. The theoretical models are based on calculation of characteristic gearbox and bearings fault frequencies, in order to locate the spectral components of the faults. In this work, the influence of vibrations over the system is observed by performing motor current signal analysis to detect the presence of faults. The obtained results show the feasibility of detecting multiple faults in a kinematic chain, making the proposed methodology suitable to be used in the application of industrial machinery diagnosis.Postprint (published version

    Experimental set-up for investigation of fault diagnosis of a centrifugal pump

    Get PDF
    Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated

    Trends in Fault Diagnosis for Electrical Machines

    Full text link
    [EN] The fault diagnosis of rotating electrical machines has received an intense amount of research interest during the last 30 years. Reducing maintenance costs and preventing unscheduled downtimes, which result in losses of production and financial incomes, are the priorities of electrical drives manufacturers and operators. In fact, both correct diagnosis and early detection of incipient faults lead to fast unscheduled maintenance and short downtime for the process under consideration. They also prevent the harmful and sometimes devastating consequences of faults and failures. This topic has become far more attractive and critical as the population of electric machines has greatly increased in recent years. The total number of operating electrical machines in the world was around 16.1 billion in 2011, with a growth rate of about 50% in the last five years [1].Henao, H.; Capolino, G.; Fernández-Cabanas, M.; Filippetti, F.; Bruzzese, C.; Strangas, E.; Pusca, R.... (2014). Trends in Fault Diagnosis for Electrical Machines. IEEE Industrial Electronics Magazine. 8(2):31-42. doi:10.1109/MIE.2013.2287651S31428

    Rotating Electrical Machines: Types, Applications and Recent Advances

    Get PDF
    The Rotating Electrical Machines (REMs) are classified into Motors and Generators. They powered the industrial, domestic and commercial loads. Because of their importance. This paper discussed different types of REMs, their applications and recent advances. REMs are applied in Teaching, Domestic, Mechatronics, Motorcycle, Three-wheelers, Electric Vehicle, Healthcare, Flywheel Energy Storage and Wind Energy Conversion Systems. It periscopes the advances of REMs in design, Fault diagnostic, control and condition monitoring. Its significance is to shed light on some advances made in REM

    Comprehensible credit scoring models using rule extraction from support vector machines.

    Get PDF
    In recent years, Support Vector Machines (SVMs) were successfully applied to a wide range of applications. Their good performance is achieved by an implicit non-linear transformation of the original problem to a high-dimensional (possibly infinite) feature space in which a linear decision hyperplane is constructed that yields a nonlinear classifier in the input space. However, since the classifier is described as a complex mathematical function, it is rather incomprehensible for humans. This opacity property prevents them from being used in many real- life applications where both accuracy and comprehensibility are required, such as medical diagnosis and credit risk evaluation. To overcome this limitation, rules can be extracted from the trained SVM that are interpretable by humans and keep as much of the accuracy of the SVM as possible. In this paper, we will provide an overview of the recently proposed rule extraction techniques for SVMs and introduce two others taken from the artificial neural networks domain, being Trepan and G-REX. The described techniques are compared using publicly avail- able datasets, such as Ripley's synthetic dataset and the multi-class iris dataset. We will also look at medical diagnosis and credit scoring where comprehensibility is a key requirement and even a regulatory recommendation. Our experiments show that the SVM rule extraction techniques lose only a small percentage in performance compared to SVMs and therefore rank at the top of comprehensible classification techniques.Credit; Credit scoring; Models; Model; Applications; Performance; Space; Decision; Yield; Real life; Risk; Evaluation; Rules; Neural networks; Networks; Classification; Research;
    corecore