249 research outputs found

    On the Composability of Statistically Secure Random Oblivious Transfer

    Get PDF
    We show that random oblivious transfer protocols that are statistically secure according to a definition based on a list of information-theoretical properties are also statistically universally composable. That is, they are simulatable secure with an unlimited adversary, an unlimited simulator, and an unlimited environment machine. Our result implies that several previous oblivious transfer protocols in the literature that were proven secure under weaker, non-composable definitions of security can actually be used in arbitrary statistically secure applications without lowering the security

    Cryptographic Assumptions: A Position Paper

    Get PDF
    The mission of theoretical cryptography is to define and construct provably secure cryptographic protocols and schemes. Without proofs of security, cryptographic constructs offer no guarantees whatsoever and no basis for evaluation and comparison. As most security proofs necessarily come in the form of a reduction between the security claim and an intractability assumption, such proofs are ultimately only as good as the assumptions they are based on. Thus, the complexity implications of every assumption we utilize should be of significant substance, and serve as the yard stick for the value of our proposals. Lately, the field of cryptography has seen a sharp increase in the number of new assumptions that are often complex to define and difficult to interpret. At times, these assumptions are hard to untangle from the constructions which utilize them. We believe that the lack of standards of what is accepted as a reasonable cryptographic assumption can be harmful to the credibility of our field. Therefore, there is a great need for {\em measures} according to which we classify and compare assumptions, as to which are {\it safe} and which are not. In this paper, we propose such a classification and review recently suggested assumptions in this light. This follows the footsteps of Naor (Crypto 2003). Our governing principle is relying on hardness assumptions that are independent of the cryptographic constructions

    Practical Witness Encryption for Algebraic Languages Or How to Encrypt Under Groth-Sahai Proofs

    Get PDF
    Witness encryption (WE) is a recent powerful encryption paradigm, which allows to encrypt a message using the description of a hard problem (a word in an NP-language) and someone who knows a solution to this problem (a witness) is able to efficiently decrypt the ciphertext. Recent work thereby focuses on constructing WE for NP complete languages (and thus NP). While this rich expressiveness allows flexibility w.r.t. applications, it makes existing instantiations impractical. Thus, it is interesting to study practical variants of WE schemes for subsets of NP that are still expressive enough for many cryptographic applications. We show that such WE schemes can be generically constructed from smooth projective hash functions (SPHFs). In terms of concrete instantiations of SPHFs (and thus WE), we target languages of statements proven in the popular Groth-Sahai (GS) non-interactive witness-indistinguishable/zero-knowledge proof framework. This allows us to provide a novel way to encrypt. In particular, encryption is with respect to a GS proof and efficient decryption can only be done by the respective prover. The so obtained constructions are entirely practical. To illustrate our techniques, we apply them in context of privacy-preserving exchange of information

    Indistinguishability Obfuscation: From Approximate to Exact

    Get PDF
    We show general transformations from subexponentially-secure approximate indistinguishability obfuscation (IO) where the obfuscated circuit agrees with the original circuit on a 1/2+ϵ fraction of inputs on a certain samplable distribution, into exact indistinguishability obfuscation where the obfuscated circuit and the original circuit agree on all inputs. As a step towards our results, which is of independent interest, we also obtain an approximate-to-exact transformation for functional encryption. At the core of our techniques is a method for “fooling” the obfuscator into giving us the correct answer, while preserving the indistinguishability-based security. This is achieved based on various types of secure computation protocols that can be obtained from different standard assumptions. Put together with the recent results of Canetti, Kalai and Paneth (TCC 2015), Pass and Shelat (TCC 2016), and Mahmoody, Mohammed and Nemathaji (TCC 2016), we show how to convert indistinguishability obfuscation schemes in various ideal models into exact obfuscation schemes in the plain model.National Science Foundation (U.S.) (Grant CNS-1350619)National Science Foundation (U.S.) (Grant CNS-1414119

    Lattice-Inspired Broadcast Encryption and Succinct Ciphertext-Policy ABE

    Get PDF
    Broadcast encryption remains one of the few remaining central cryptographic primitives that are not yet known to be achievable under a standard cryptographic assumption (excluding obfuscation-based constructions, see below). Furthermore, prior to this work, there were no known direct candidates for post-quantum-secure broadcast encryption. We propose a candidate ciphertext-policy attribute-based encryption (CP-ABE) scheme for circuits, where the ciphertext size depends only on the depth of the policy circuit (and not its size). This, in particular, gives us a Broadcast Encryption (BE) scheme where the size of the keys and ciphertexts have a poly-logarithmic dependence on the number of users. This goal was previously only known to be achievable assuming ideal multilinear maps (Boneh, Waters and Zhandry, Crypto 2014) or indistinguishability obfuscation (Boneh and Zhandry, Crypto 2014) and in a concurrent work from generic bilinear groups and the learning with errors (LWE) assumption (Agrawal and Yamada, Eurocrypt 2020). Our construction relies on techniques from lattice-based (and in particular LWE-based) cryptography. We analyze some attempts at cryptanalysis, but we are unable to provide a security proof

    Algebraic Restriction Codes and Their Applications

    Get PDF
    Consider the following problem: You have a device that is supposed to compute a linear combination of its inputs, which are taken from some finite field. However, the device may be faulty and compute arbitrary functions of its inputs. Is it possible to encode the inputs in such a way that only linear functions can be evaluated over the encodings? I.e., learning an arbitrary function of the encodings will not reveal more information about the inputs than a linear combination. In this work, we introduce the notion of algebraic restriction codes (AR codes), which constrain adversaries who might compute any function to computing a linear function. Our main result is an information-theoretic construction AR codes that restrict any class of function with a bounded number of output bits to linear functions. Our construction relies on a seed which is not provided to the adversary. While interesting and natural on its own, we show an application of this notion in cryptography. In particular, we show that AR codes lead to the first construction of rate-1 oblivious transfer with statistical sender security from the Decisional Diffie-Hellman assumption, and the first-ever construction that makes black-box use of cryptography. Previously, such protocols were known only from the LWE assumption, using non-black-box cryptographic techniques. We expect our new notion of AR codes to find further applications, e.g., in the context of non-malleability, in the future

    Proofs of Knowledge on Monotone Predicates and its Application to Attribute-Based Identifications and Signatures

    Get PDF
    We propose a concrete procedure of the ÎŁ\Sigma-protocol introduced by Cramer, DamgĂĄrd and Schoenmakers at CRYPTO \u2794, which is for proving knowledge that a set of witnesses satisfies a monotone predicate in witness-indistinguishable way; that is, hiding the assignment of truth in the predicate. We provide a detailed procedure by extending the so-called OR-proof
    • …
    corecore