368 research outputs found

    Non-conventional digital signatures and their implementations – A review

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19713-5_36The current technological scenario determines a profileration of trust domains, which are usually defined by validating the digital identity linked to each user. This validation entails critical assumptions about the way users’ privacy is handled, and this calls for new methods to construct and treat digital identities. Considering cryptography, identity management has been constructed and managed through conventional digital signatures. Nowadays, new types of digital signatures are required, and this transition should be guided by rigorous evaluation of the theoretical basis, but also by the selection of properly verified software means. This latter point is the core of this paper. We analyse the main non-conventional digital signatures that could endorse an adequate tradeoff betweeen security and privacy. This discussion is focused on practical software solutions that are already implemented and available online. The goal is to help security system designers to discern identity management functionalities through standard cryptographic software libraries.This work was supported by Comunidad de Madrid (Spain) under the project S2013/ICE-3095-CM (CIBERDINE) and the Spanish Government project TIN2010-19607

    Low-Complexity Cryptographic Hash Functions

    Get PDF
    Cryptographic hash functions are efficiently computable functions that shrink a long input into a shorter output while achieving some of the useful security properties of a random function. The most common type of such hash functions is collision resistant hash functions (CRH), which prevent an efficient attacker from finding a pair of inputs on which the function has the same output

    On the Complexity of Decomposable Randomized Encodings, Or: How Friendly Can a Garbling-Friendly PRF Be?

    Get PDF

    SoK: Privacy-Preserving Signatures

    Get PDF
    Modern security systems depend fundamentally on the ability of users to authenticate their communications to other parties in a network. Unfortunately, cryptographic authentication can substantially undermine the privacy of users. One possible solution to this problem is to use privacy-preserving cryptographic authentication. These protocols allow users to authenticate their communications without revealing their identity to the verifier. In the non-interactive setting, the most common protocols include blind, ring, and group signatures, each of which has been the subject of enormous research in the security and cryptography literature. These primitives are now being deployed at scale in major applications, including Intel\u27s SGX software attestation framework. The depth of the research literature and the prospect of large-scale deployment motivate us to systematize our understanding of the research in this area. This work provides an overview of these techniques, focusing on applications and efficiency

    Encryption with Quantum Public Keys

    Full text link
    It is an important question to find constructions of quantum cryptographic protocols which rely on weaker computational assumptions than classical protocols. Recently, it has been shown that oblivious transfer and multi-party computation can be constructed from one-way functions, whereas this is impossible in the classical setting in a black-box way. In this work, we study the question of building quantum public-key encryption schemes from one-way functions and even weaker assumptions. Firstly, we revisit the definition of IND-CPA security to this setting. Then, we propose three schemes for quantum public-key encryption from one-way functions, pseudorandom function-like states with proof of deletion and pseudorandom function-like states, respectively.Comment: This paper is subsumed and superseded by arXiv:2303.0208

    Bounded Indistinguishability for Simple Sources

    Get PDF

    Slow Motion Zero Knowledge Identifying With Colliding Commitments

    Get PDF
    Discrete-logarithm authentication protocols are known to present two interesting features: The first is that the prover\u27s commitment, x=grx=g^r, claims most of the prover\u27s computational effort. The second is that xx does not depend on the challenge and can hence be computed in advance. Provers exploit this feature by pre-loading (or pre-computing) ready to use commitment pairs ri,xir_i,x_i. The rir_i can be derived from a common seed but storing each xix_i still requires 160 to 256 bits when implementing DSA or Schnorr. This paper proposes a new concept called slow motion zero-knowledge. SM-ZK allows the prover to slash commitment size (by a factor of 4 to 6) by combining classical zero-knowledge and a timing side-channel. We pay the conceptual price of requiring the ability to measure time but, in exchange, obtain communication-efficient protocols

    The Design Space of Lightweight Cryptography

    Get PDF
    International audienceFor constrained devices, standard cryptographic algorithms can be too big, too slow or too energy-consuming. The area of lightweight cryptography studies new algorithms to overcome these problems. In this paper, we will focus on symmetric-key encryption, authentication and hashing. Instead of providing a full overview of this area of research, we will highlight three interesting topics. Firstly, we will explore the generic security of lightweight constructions. In particular, we will discuss considerations for key, block and tag sizes, and explore the topic of instantiating a pseudorandom permutation (PRP) with a non-ideal block cipher construction. This is inspired by the increasing prevalence of lightweight designs that are not secure against related-key attacks, such as PRINCE, PRIDE or Chaskey. Secondly, we explore the efficiency of cryptographic primitives. In particular, we investigate the impact on efficiency when the input size of a primitive doubles. Lastly, we provide some considerations for cryptographic design. We observe that applications do not always use cryptographic algorithms as they were intended, which negatively impacts the security and/or efficiency of the resulting implementations
    • …
    corecore