252,106 research outputs found

    Ubic: Bridging the gap between digital cryptography and the physical world

    Full text link
    Advances in computing technology increasingly blur the boundary between the digital domain and the physical world. Although the research community has developed a large number of cryptographic primitives and has demonstrated their usability in all-digital communication, many of them have not yet made their way into the real world due to usability aspects. We aim to make another step towards a tighter integration of digital cryptography into real world interactions. We describe Ubic, a framework that allows users to bridge the gap between digital cryptography and the physical world. Ubic relies on head-mounted displays, like Google Glass, resource-friendly computer vision techniques as well as mathematically sound cryptographic primitives to provide users with better security and privacy guarantees. The framework covers key cryptographic primitives, such as secure identification, document verification using a novel secure physical document format, as well as content hiding. To make a contribution of practical value, we focused on making Ubic as simple, easily deployable, and user friendly as possible.Comment: In ESORICS 2014, volume 8712 of Lecture Notes in Computer Science, pp. 56-75, Wroclaw, Poland, September 7-11, 2014. Springer, Berlin, German

    Opportunities and challenges for data physicalization

    Get PDF
    Physical representations of data have existed for thousands of years. Yet it is now that advances in digital fabrication, actuated tangible interfaces, and shape-changing displays are spurring an emerging area of research that we call Data Physicalization. It aims to help people explore, understand, and communicate data using computer-supported physical data representations. We call these representations physicalizations, analogously to visualizations -- their purely visual counterpart. In this article, we go beyond the focused research questions addressed so far by delineating the research area, synthesizing its open challenges and laying out a research agenda

    Optimizing Virtual Reality for All Users through Gaze-Contingent and Adaptive Focus Displays

    Get PDF
    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one

    Novel Interaction Techniques for Mobile Augmented Reality applications. A Systematic Literature Review

    Get PDF
    This study reviews the research on interaction techniques and methods that could be applied in mobile augmented reality scenarios. The review is focused on themost recent advances and considers especially the use of head-mounted displays. Inthe review process, we have followed a systematic approach, which makes the reviewtransparent, repeatable, and less prone to human errors than if it was conducted in amore traditional manner. The main research subjects covered in the review are headorientation and gaze-tracking, gestures and body part-tracking, and multimodality– as far as the subjects are related to human-computer interaction. Besides these,also a number of other areas of interest will be discussed.Siirretty Doriast

    Artificial intelligence and automation in endoscopy and surgery

    Get PDF
    Modern endoscopy relies on digital technology, from high-resolution imaging sensors and displays to electronics connecting configurable illumination and actuation systems for robotic articulation. In addition to enabling more effective diagnostic and therapeutic interventions, the digitization of the procedural toolset enables video data capture of the internal human anatomy at unprecedented levels. Interventional video data encapsulate functional and structural information about a patient’s anatomy as well as events, activity and action logs about the surgical process. This detailed but difficult-to-interpret record from endoscopic procedures can be linked to preoperative and postoperative records or patient imaging information. Rapid advances in artificial intelligence, especially in supervised deep learning, can utilize data from endoscopic procedures to develop systems for assisting procedures leading to computer-assisted interventions that can enable better navigation during procedures, automation of image interpretation and robotically assisted tool manipulation. In this Perspective, we summarize state-of-the-art artificial intelligence for computer-assisted interventions in gastroenterology and surgery

    A process for prototyping onboard payload displays for Space Station Freedom

    Get PDF
    Significant advances have been made in the area of Human-Computer Interface design. However, there is no well-defined process for going from user interface requirements to user interface design. Developing and designing a clear and consistent user interface for medium to large scale systems is a very challenging and complex task. The task becomes increasingly difficult when there is very little guidance and procedures on how the development process should flow from one stage to the next. Without a specific sequence of development steps each design becomes difficult to repeat, to evaluate, to improve, and to articulate to others. This research contributes a process which identifies the phases of development and products produced as a result of each phase for a rapid prototyping process to be used to develop requirements for the onboard payload displays for Space Station Freedom. The functional components of a dynamic prototyping environment in which this process can be carried out is also discussed. Some of the central questions which are answered here include: How does one go from specifications to an actual prototype? How is a prototype evaluated? How is usability defined and thus measured? How do we use the information from evaluation in redesign of an interface? and Are there techniques which allow for convergence on a design

    Efektifitas Computer Aided Learning (Cal) dalam Pembelajaran Kosakata Bahasa Inggris Siswa Sekolah Dasar

    Get PDF
    Advances in technology encourage the use of technology in teaching and learning process. The use of technology in the learning process is rapidly gaining popularity along with the development of information technology which is a supporting factor in the development of education and also to provide innovative solutions to the problems faced. Computer Aided Learning (CAL) is a method of approach to teaching and learning activities with the help of computer technology as an auxiliary medium is used to help learners understand the subject matter ranging from displays and provide reinforcement material also as a tool to assess learning achievement in which the material is packaged in the form software (software). Besides using CAL to learners will be able to interact with the interactive learning program that is available so they can learn to follow the ability of each learner and can also repeat a topic they have not understood the lessons step by step. By using CAL, students become more independent in learning, because the learning process not only depends on the teacher

    Simulation model of Pacinian corpuscle for haptic system design

    Get PDF
    With the increasing need for tactile feedback in Human Computer Interfaces used in robotics, medical, and mobile devices, there has been an increasing interest in the design of tactile sensors, displays, and complete haptic systems to transfer tactile information to users. These systems have improved users ability to work with remote tools or virtual environments, from enhancing the accuracy of tools like robotic surgery to improving user experiences in virtual reality systems. Despite many advances, the potential of these technologies to provide augmented or realistic sensations of touch is limited in part by the lack of understanding the complex mechanisms involved in the human perception of touch. To improve the understanding of tactile physiology, this work begins the design of a biophysically accurate simulation model of the receptor cell responsive to high frequency vibration, the Pacinian corpuscle. This receptor plays a key role in the fine control of tools and is a common target for vibrotactile haptic displays. The model incorporates computational and theoretical principles of the Pacinian corpuscles biophysics, which have been developed in past studies, to simulate its electrical response to mechanical, thermal and electrical stimuli. The accuracy and flaws of the model are demonstrated through comparisons with published physiological data. Experiments are also proposed to show how the simulation model can be used to quantitatively compare the results of different tactile displays and different external environments in order to improve the design of modern haptic systems
    • …
    corecore