211 research outputs found

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Faculty Publications & Presentations, 2007-2008

    Get PDF

    Annual Research Report, 2009-2010

    Get PDF
    Annual report of collaborative research projects of Old Dominion University faculty and students in partnership with business, industry and governmenthttps://digitalcommons.odu.edu/or_researchreports/1001/thumbnail.jp

    Don’t Learn What You Already Know

    Get PDF
    Over the past few years, deep-learning-based attacks have emerged as a de facto standard, thanks to their ability to break implementations of cryptographic primitives without pre-processing, even against widely used counter-measures such as hiding and masking. However, the recent works of Bronchain and Standaert at Tches 2020 questioned the soundness of such tools if used in an uninformed setting to evaluate implementations protected with higher-order masking. On the opposite, worst-case evaluations may be seen as possibly far from what a real-world adversary could do, thereby leading to too conservative security bounds. In this paper, we propose a new threat model that we name scheme-aware benefiting from a trade-off between uninformed and worst-case models. Our scheme-aware model is closer to a real-world adversary, in the sense that it does not need to have access to the random nonces used by masking during the profiling phase like in a worst-case model, while it does not need to learn the masking scheme as implicitly done by an uninformed adversary. We show how to combine the power of deep learning with the prior knowledge of scheme-aware modeling. As a result, we show on simulations and experiments on public datasets how it sometimes allows to reduce by an order of magnitude the profiling complexity, i.e., the number of profiling traces needed to satisfyingly train a model, compared to a fully uninformed adversary

    Informal Logic: A 'Canadian' Approach to Argument

    Get PDF
    The informal logic movement began as an attempt to develop – and teach – an alternative logic which can account for the real life arguing that surrounds us in our daily lives – in newspapers and the popular media, political and social commentary, advertising, and interpersonal exchange. The movement was rooted in research and discussion in Canada and especially at the University of Windsor, and has become a branch of argumentation theory which intersects with related traditions and approaches (notably formal logic, rhetoric and dialectics in the form of pragma-dialectics). In this volume, some of the best known contributors to the movement discuss their views and the reasoning and argument which is informal logic’s subject matter. Many themes and issues are explored in a way that will fuel the continued evolution of the field. Federico Puppo adds an insightful essay which considers the origins and development of informal logic and whether informal logicians are properly described as a “school” of thought. In considering that proposition, Puppo introduces readers to a diverse range of essays, some of them previously published, others written specifically for this volume

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Adaptive search techniques in AI planning and heuristic search

    Get PDF
    State-space search is a common approach to solve problems appearing in artificial intelligence and other subfields of computer science. In such problems, an agent must find a sequence of actions leading from an initial state to a goal state. However, the state spaces of practical applications are often too large to explore exhaustively. Hence, heuristic functions that estimate the distance to a goal state (such as straight-line distance for navigation tasks) are used to guide the search more effectively. Heuristic search is typically viewed as a static process. The heuristic function is assumed to be unchanged throughout the search, and its resulting values are directly used for guidance without applying any further reasoning to them. Yet critical aspects of the task may only be discovered during the search, e.g., regions of the state space where the heuristic does not yield reliable values. Our work here aims to make this process more dynamic, allowing the search to adapt to such observations. One form of adaptation that we consider is online refinement of the heuristic function. We design search algorithms that detect weaknesses in the heuristic, and address them with targeted refinement operations. If the heuristic converges to perfect estimates, this results in a secondary method of progress, causing search algorithms that are otherwise incomplete to eventually find a solution. We also consider settings that inherently require adaptation: In online replanning, a plan that is being executed must be amended for changes in the environment. Similarly, in real-time search, an agent must act under strict time constraints with limited information. The search algorithms we introduce in this work share a common pattern of online adaptation, allowing them to effectively react to challenges encountered during the search. We evaluate our contributions on a wide range of standard benchmarks. Our results show that the flexibility of these algorithms makes them more robust than traditional approaches, and they often yield substantial improvements over current state-of-the-art planners.Die Zustandsraumsuche ist ein oft verwendeter Ansatz um verschiedene Probleme zu lösen, die in der KĂŒnstlichen Intelligenz und anderen Bereichen der Informatik auftreten. Dabei muss ein Akteur eine Folge von Aktionen finden, die einen Pfad von einem Startzustand zu einem Zielzustand bilden. Die ZustandsrĂ€ume von praktischen Anwendungen sind hĂ€ufig zu groß um sie vollstĂ€ndig zu durchsuchen. Aus diesem Grund leitet man die Suche mit Heuristiken, die die Distanz zu einem Zielzustand abschĂ€tzen; zum Beispiel lĂ€sst sich die Luftliniendistanz als Heuristik fĂŒr Navigationsprobleme einsetzen. Heuristische Suche wird typischerweise als statischer Prozess angesehen. Man nimmt an, dass die Heuristik wĂ€hrend der Suche eine unverĂ€nderte Funktion ist, und die resultierenden Werte werden direkt zur Leitung der Suche benutzt ohne weitere Logik darauf anzuwenden. Jedoch könnten kritische Aspekte des Problems erst im Laufe der Suche erkannt werden, wie zum Beispiel Bereiche des Zustandsraums in denen die Heuristik keine verlĂ€sslichen AbschĂ€tzungen liefert. In dieser Arbeit wird der Suchprozess dynamischer gestaltet und der Suche ermöglicht sich solchen Beobachtungen anzupassen. Eine Art dieser Anpassung ist die Onlineverbesserung der Heuristik. Es werden Suchalgorithmen entwickelt, die SchwĂ€chen in der Heuristik erkennen und mit gezielten Verbesserungsoperationen beheben. Wenn die Heuristik zu perfekten Werten konvergiert ergibt sich daraus eine zusĂ€tzliche Form von Fortschritt, wodurch auch Suchalgorithmen, die sonst unvollstĂ€ndig sind, garantiert irgendwann eine Lösung finden werden. Es werden auch Szenarien betrachtet, die schon von sich aus Anpassung erfordern: In der Onlineumplanung muss ein Plan, der gerade ausgefĂŒhrt wird, auf Änderungen in der Umgebung angepasst werden. Ähnlich dazu muss sich ein Akteur in der Echtzeitsuche unter strengen Zeitauflagen und mit eingeschrĂ€nkten Informationen bewegen. Die Suchalgorithmen, die in dieser Arbeit eingefĂŒhrt werden, folgen einem gemeinsamen Muster von Onlineanpassung, was ihnen ermöglicht effektiv auf Herausforderungen zu reagieren die im Verlauf der Suche aufkommen. Diese AnsĂ€tze werden auf einer breiten Reihe von Benchmarks ausgewertet. Die Ergebnisse zeigen, dass die FlexibilitĂ€t dieser Algorithmen zu erhöhter ZuverlĂ€ssigkeit im Vergleich zu traditionellen AnsĂ€tzen fĂŒhrt, und es werden oft deutliche Verbesserungen gegenĂŒber modernen Planungssystemen erzielt.DFG grant 389792660 as part of TRR 248 – CPEC (see https://perspicuous-computing.science), and DFG grant HO 2169/5-1, "Critically Constrained Planning via Partial Delete Relaxation
    • 

    corecore