99 research outputs found

    Machine learning applications in proteomics research: How the past can boost the future

    Get PDF
    Machine learning is a subdiscipline within artificial intelligence that focuses on algorithms that allow computers to learn solving a (complex) problem from existing data. This ability can be used to generate a solution to a particularly intractable problem, given that enough data are available to train and subsequently evaluate an algorithm on. Since MS-based proteomics has no shortage of complex problems, and since publicly available data are becoming available in ever growing amounts, machine learning is fast becoming a very popular tool in the field. We here therefore present an overview of the different applications of machine learning in proteomics that together cover nearly the entire wet- and dry-lab workflow, and that address key bottlenecks in experiment planning and design, as well as in data processing and analysis.acceptedVersio

    Hardware accelerated protein inference framework

    Full text link
    Protein inference plays a vital role in the proteomics study. Two major approaches could be used to handle the problem of protein inference; top-down and bottom-up. This paper presents a framework for protein inference, which uses hardware accelerated protein inference framework for handling the most important step in a bottom-up approach, viz. peptide identification during the assembling process. In our framework, identified peptides and their probabilities are used to predict the most suitable reference protein cluster for a given input amino acid sequence with the probability of identified peptides. The framework is developed on an FPGA where hardware software co-design techniques are used to accelerate the computationally intensive parts of the protein inference process. In the paper we have measured, compared and reported the time taken for the protein inference process in our framework against a pure software implementation

    Protein inference based on peptides identified from tandem mass spectra

    Get PDF
    Protein inference is a critical computational step in the study of proteomics. It lays the foundation for further structural and functional analysis of proteins, based on which new medicine or technology can be developed. Today, mass spectrometry (MS) is the technique of choice for large-scale inference of proteins in proteomics. In MS-based protein inference, three levels of data are generated: (1) tandem mass spectra (MS/MS); (2) peptide sequences and their scores or probabilities; and (3) protein sequences and their scores or probabilities. Accordingly, the protein inference problem can be divided into three computational phases: (1) process MS/MS to improve the quality of the data and facilitate subsequent peptide identification; (2) postprocess peptide identification results from existing algorithms which match MS/MS to peptides; and (3) infer proteins by assembling identified peptides. The addressing of these computational problems consists of the main content of this thesis. The processing of MS/MS data mainly includes denoising, quality assessment, and charge state determination. Here, we discuss the determination of charge states from MS/MS data using low-resolution collision induced dissociation. Such spectra with multiple charges are usually searched multiple times by assuming each possible charge state. Not only does this strategy increase the overall database search time, but also yields more false positives. Hence, it is advantageous to determine the charge states of such spectra before the database search. A new approach is proposed to determine the charge states of low-resolution MS/MS. Four novel and discriminant features are adopted to describe each MS/MS and are used in Gaussian mixture model to distinguish doubly and triply charged peptides. The results have shown that this method can assign charge states to low-resolution MS/MS more accurately than existing methods. Many search engines are available for peptide identification. However, there is usually a high false positive rate (FPR) in the results. This can bring many false identifications to protein inference. As a result, it is necessary to postprocess peptide identification results. The most commonly used method is performing statistical analysis, which does not only make it possible to compare and combine the results from different search engines, but also facilitates subsequent protein inference. We proposed a new method to estimate the accuracy of peptide identification with logistic regression (LR) and exemplify it based on Sequest scores. Each peptide is characterized with the regularized Sequest scores ΔCn∗ and Xcorr∗. The score regularization is formulated as an optimization problem by applying two assumptions: the smoothing consistency between sibling peptides and the fitting consistency between original scores and new scores. The results have shown that the proposed method can robustly assign accurate probabilities to peptides and has a very high discrimination power, higher than that of PeptideProphet, to distinguish correctly and incorrectly identified peptides. Given identified peptides and their probabilities, protein inference is conducted by assembling these peptides. Existing methods to address this MS-based protein inference problem can be classified into two groups: twostage and one unified framework to identify peptides and infer proteins. In two-stage methods, protein inference is based on, but also separated from, peptide identification. Whereas in one unified framework, protein inference and peptide identification are integrated together. In this study, we proposed a unified framework for protein inference, and developed an iterative method accordingly to infer proteins based on Sequest peptide identification. The statistical analysis of peptide identification is performed with the LR previously introduced. Protein inference and peptide identification are iterated in one framework by adding a feedback from protein inference to peptide identification. The feedback information is a list of high-confidence proteins, which is used to update the adjacency matrix between peptides. The adjacency matrix is used in the regularization of peptide scores. The results have shown that the proposed method can infer more true positive proteins, while outputting less false positive proteins than ProteinProphet at the same FPR. The coverage of inferred proteins is also significantly increased due to the selection of multiple peptides for each MS/MS spectrum and the improvement of their scores by the feedback from the inferred proteins

    Mutual enlightenment: A toolbox of concepts and methods for integrating evolutionary and clinical toxinology via snake venomics and the contextual stance

    Get PDF
    Snakebite envenoming is a neglected tropical disease that may claim over 100,000 human lives annually worldwide. Snakebite occurs as the result of an interaction between a human and a snake that elicits either a defensive response from the snake or, more rarely, a feeding response as the result of mistaken identity. Snakebite envenoming is therefore a biological and, more specifically, an ecological problem. Snake venom itself is often described as a “cocktail”, as it is a heterogenous mixture of molecules including the toxins (which are typically proteinaceous) responsible for the pathophysiological consequences of envenoming. The primary function of venom in snake ecology is pre-subjugation, with defensive deployment of the secretion typically considered a secondary function. The particular composition of any given venom cocktail is shaped by evolutionary forces that include phylogenetic constraints associated with the snake’s lineage and adaptive responses to the snake’s ecological context, including the taxa it preys upon and by which it is predated upon. In the present article, we describe how conceptual frameworks from ecology and evolutionary biology can enter into a mutually enlightening relationship with clinical toxinology by enabling the consideration of snakebite envenoming from an “ecological stance”. We detail the insights that may emerge from such a perspective and highlight the ways in which the high-fidelity descriptive knowledge emerging from applications of -omics era technologies – “venomics” and “antivenomics” – can combine with evolutionary explanations to deliver a detailed understanding of this multifactorial health crisis.Ministerio de Ciencia e Innovacion/[BMC 2004-01432]//EspañaMinisterio de Ciencia e Innovacion/[BFU 2007-61563]//EspañaMinisterio de Ciencia e Innovacion/[BFU 2010-173730]//EspañaMinisterio de Ciencia e Innovacion/[BFU 2013-42833-P]//EspañaMinisterio de Ciencia e Innovacion/[BFU 2017-89103-P]//EspañaNorwegian Research Council/[No.287462.]/NFR/NoruegaNational Health and Medical Research Council/[Grant 13/093/002 AVRU]/AustraliaDBT/Wellcome Trust India Alliance/[IA/I/19/2/504647]//IndiaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Evaluation of the relevance and impact of kinase dysfunction in neurological disorders through proteomics and phosphoproteomics bioinformatics

    Get PDF
    Phosphorylation is an important post-translational modification that is involved in various biological processes and its dysregulation has in particular been linked to diseases of the central nervous system including neurological disorders. The present thesis characterizes alterations in the phosphoproteome and protein abundance associated with schizophrenia and Parkinson's disease, with the goal of uncovering the underlying disease mechanisms. To support this goal, I eventually created an automated analysis pipeline in R to streamline the analysis process of proteomics and phosphoproteomics data. Mass spectrometry (MS) technology is utilized to generate proteomics and phosphoproteomics data. Study I of the thesis demonstrates an automated R pipeline, PhosPiR, created to perform multi-level functional analyses of MS data after the identification and quantification of the raw spectral data. The pipeline does not require coding knowledge to run. It supports 18 different organisms, and provides analyses of MS intensity data from preprocessing, normalization and imputation, through to figure overviews, statistical analysis, enrichment analysis, PTM-SEA, kinase prediction and activity analysis, network analysis, hub analysis, annotation mining, and homolog alignment. The LRRK2-G2019S mutation, a frequent genetic cause of late onset Parkinson's disease, was investigated in Study II and III. One study investigated the mechanism of LRRK2-G2019S function in brain, and the other identified proteins with significantly altered overall translation patterns in sporadic and LRRK2-G2019S patient samples. Specifically, study II identified that LRRK2 is localized to the small 40S ribosomal subunit and that LRRK2 activity suppresses RNA translation, as validated in cell and animal models of Parkinson's disease and in patient cells. Study III utilized bio-orthogonal non-canonical amino acid tagging to label newly translated proteins in order to identify which proteins were affected by repressed translation in patient samples, using mass spectrometry analysis. The analysis revealed 33 and 30 nascent proteins with reduced synthesis in sporadic and LRRK2-G2019S Parkinson’s cases, respectively. The biological process "cytosolic signal recognition particle (SRP)-dependent co-translational protein targeting to membrane" was functionally significantly affected in both sporadic and LRRK2-G2019S Parkinson's, while "Tubulin/FTsz C-terminal domain superfamily network" was only significantly enriched in LRRK2-G2019S Parkinson’s cases. The findings were validated bytargeted proteomics and immunoblotting. Study IV is conducted to investigate the role of JNK1 in schizophrenia. Wild type and Jnk1-/- mice were used to analyze the phosphorylation profile using LC-MS/MS analysis. 126 proteins associated with schizophrenia were identified to overlap with the significantly differentially phosphorylated proteins in Jnk1-/- mice brain. The NMDAR trafficking pathway was found to be highly enriched, and surface staining of NMDAR subunits in neurons showed that surface expression of both subunits in Jnk1-/- neurons was significantly decreased. Further behavioral tests conducted with MK801 treatment have associated the Jnk1-/- molecular and behavioral phenotype with schizophrenia and neuropsychiatric disease

    Developing a bioinformatics framework for proteogenomics

    Get PDF
    In the last 15 years, since the human genome was first sequenced, genome sequencing and annotation have continued to improve. However, genome annotation has not kept up with the accelerating rate of genome sequencing and as a result there is now a large backlog of genomic data waiting to be interpreted both quickly and accurately. Through advances in proteomics a new field has emerged to help improve genome annotation, termed proteogenomics, which uses peptide mass spectrometry data, enabling the discovery of novel protein coding genes, as well as the refinement and validation of known and putative protein-coding genes. The annotation of genomes relies heavily on ab initio gene prediction programs and/or mapping of a range of RNA transcripts. Although this method provides insights into the gene content of genomes it is unable to distinguish protein-coding genes from putative non-coding RNA genes. This problem is further confounded by the fact that only 5% of the public protein sequence repository at UniProt/SwissProt has been curated and derived from actual protein evidence. This thesis contends that it is critically important to incorporate proteomics data into genome annotation pipelines to provide experimental protein-coding evidence. Although there have been major improvements in proteogenomics over the last decade there are still numerous challenges to overcome. These key challenges include the loss of sensitivity when using inflated search spaces of putative sequences, how best to interpret novel identifications and how best to control for false discoveries. This thesis addresses the existing gap between the use of genomic and proteomic sources for accurate genome annotation by applying a proteogenomics approach with a customised methodology. This new approach was applied within four case studies: a prokaryote bacterium; a monocotyledonous wheat plant; a dicotyledonous grape plant; and human. The key contributions of this thesis are: a new methodology for proteogenomics analysis; 145 suggested gene refinements in Bradyrhizobium diazoefficiens (nitrogen-fixing bacteria); 55 new gene predictions (57 protein isoforms) in Vitis vinifera (grape); 49 new gene predictions (52 protein isoforms) in Homo sapiens (human); and 67 new gene predictions (70 protein isoforms) in Triticum aestivum (bread wheat). Lastly, a number of possible improvements for the studies conducted in this thesis and proteogenomics as a whole have been identified and discussed

    Novel Computational Methods for the Analysis and Interpretation of MS/MS Data in Metaproteomics

    No full text

    Novel Computational Methods for the Analysis and Interpretation of MS/MS Data in Metaproteomics

    No full text
    Otto-von-Guericke-Universität Magdeburg, Fakultät für Verfahrens- und Systemtechnik, Dissertation, 2016von Dipl.-Bioinf. Thilo MuthLiteraturverzeichnis: Seite 151-17
    corecore