3,419 research outputs found

    A State-of-the-art Integrated Transportation Simulation Platform

    Full text link
    Nowadays, universities and companies have a huge need for simulation and modelling methodologies. In the particular case of traffic and transportation, making physical modifications to the real traffic networks could be highly expensive, dependent on political decisions and could be highly disruptive to the environment. However, while studying a specific domain or problem, analysing a problem through simulation may not be trivial and may need several simulation tools, hence raising interoperability issues. To overcome these problems, we propose an agent-directed transportation simulation platform, through the cloud, by means of services. We intend to use the IEEE standard HLA (High Level Architecture) for simulators interoperability and agents for controlling and coordination. Our motivations are to allow multiresolution analysis of complex domains, to allow experts to collaborate on the analysis of a common problem and to allow co-simulation and synergy of different application domains. This paper will start by presenting some preliminary background concepts to help better understand the scope of this work. After that, the results of a literature review is shown. Finally, the general architecture of a transportation simulation platform is proposed

    An agent-based approach to modelling driver route choice behaviour under the influence of real-time information

    Get PDF
    This paper presents an agent-based approach to modelling individual driver behaviour under the influence of real-time traffic information. The driver behaviour models developed in this study are based on a behavioural survey of drivers which was conducted on a congested commuting corridor in Brisbane, Australia. Commuters' responses to travel information were analysed and a number of discrete choice models were developed to determine the factors influencing drivers' behaviour and their propensity to change route and adjust travel patterns. Based on the results obtained from the behavioural survey, the agent behaviour parameters which define driver characteristics, knowledge and preferences were identified and their values determined. A case study implementing a simple agent-based route choice decision model within a microscopic traffic simulation tool is also presented. Driver-vehicle units (DVUs) were modelled as autonomous software components that can each be assigned a set of goals to achieve and a database of knowledge comprising certain beliefs, intentions and preferences concerning the driving task. Each DVU provided route choice decision-making capabilities, based on perception of its environment, that were similar to the described intentions of the driver it represented. The case study clearly demonstrated the feasibility of the approach and the potential to develop more complex driver behavioural dynamics based on the belief-desire-intention agent architecture. (C) 2002 Elsevier Science Ltd. All rights reserved

    Modelling a Smart Motorway

    Get PDF
    The increasing number of vehicles in the UK is putting strain on the motorway infrastructure. Smart Motorways have been implemented to reduce congestion. To test systems before they are physically built, they are simulated using objects models and GIS data. This paper has modelled a new smart traffic light system for a slip road joining a smart motorway. The smart traffic light models have been simulated alongside driver behavior models which together show that a smart traffic light system can adapt to continuously fluctuating traffic flow. The smart traffic light system reduced the number of congestion alerts by 80% on the smart motorway

    Hybrid Petri nets-based Flow modeling and application on hybrid system.

    Get PDF
    Flow management is necessary in several application areas, in the optimization of industrial production lines, in IT to manage data flows and in the automation of industrial systems. Physical systems in general consist of continuous processes interacting with discrete processes forming a hybrid dynamic system constituted by continuous dynamic type models and discrete events. The application of the hybrid Petri nets tool in the modeling, study and performance evaluation of these systems helps to analyze the dynamic properties by acting on the parameters and the structure of the models in order to evaluate their behavior. This work is focused on the application of this tool to model a material flow management system between a rotary kiln and a clinker cooler in a production line (cement process). The implementation of the modeling and the analysis of the results obtained by simulation on a software platform (Visual Object Net ++), aims to study industrial processes with mathematical tools and to follow their behavior on software, this allows us an optimal analysis of complex systems in dangerous environments, and to try practical and effective solutions by simple means before moving on to the implementation and programming of actions that require more expensive means

    Calibration of Traffic Simulation Models using SPSA

    Get PDF
    Εθνικό Μετσόβιο Πολυτεχνείο--Μεταπτυχιακή Εργασία. Διεπιστημονικό-Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών (Δ.Π.Μ.Σ.) “Γεωπληροφορική
    corecore