5,148 research outputs found

    A Methodology for Trustworthy IoT in Healthcare-Related Environments

    Get PDF
    The transition to the so-called retirement years, comes with the freedom to pursue old passions and hobbies that were not possible to do in the past busy life. Unfortunately, that freedom does not come alone, as the previous young years are gone, and the body starts to feel the time that passed. The necessity to adapt elder way of living, grows as they become more prone to health problems. Often, the solution for the attention required by the elders is nursing homes, or similar, that take away their so cherished independence. IoT has the great potential to help elder citizens stay healthier at home, since it has the possibility to connect and create non-intrusive systems capable of interpreting data and act accordingly. With that capability, comes the responsibility to ensure that the collected data is reliable and trustworthy, as human wellbeing may rely on it. Addressing this uncertainty is the motivation for the presented work. The proposed methodology to reduce this uncertainty and increase confidence relies on a data fusion and a redundancy approach, using a sensor set. Since the scope of wellbeing environment is wide, this thesis focuses its proof of concept on the detection of falls inside home environments, through an android app using an accelerometer sensor and a micro- phone. The experimental results demonstrates that the implemented system has more than 80% of reliable performance and can provide trustworthy results. Currently the app is being tested also in the frame of the European Union projects Smart4Health and Smart Bear.A transição para os chamados anos de reforma, vem com a liberdade de perseguir velhas pai- xões e passatempos que na passada vida ocupada não eram possíveis de realizar. Infelizmente, essa liberdade não vem sozinha, uma vez que os anos jovens anteriores terminaram, e o corpo começa a sentir o tempo que passou. A necessidade de adaptar o modo de vida dos menos jovens, cresce à medida que estes se tornam mais propensos a problemas de saúde. Muitas vezes, a solução para a atenção que os mais idosos necessitam são os lares de idosos, ou similares, que lhes tiram a tão querida independência. IoT tem o grande potencial de ajudar os cidadãos idosos a permanecerem mais saudá- veis em casa, uma vez que tem a possibilidade de se ligar e criar sistemas não intrusivos capa- zes de interpretar dados e agir em conformidade. Com essa capacidade, vem a responsabili- dade de assegurar que os dados recolhidos são fiáveis e de confiança, uma vez que o bem- estar humano possa depender dos mesmos. Abordar esta incerteza é a motivação para o tra- balho apresentado. A metodologia proposta para reduzir esta incerteza e aumentar a confiança no sistema baseia-se numa fusão de dados e numa abordagem de redundância, utilizando um conjunto de sensores. Uma vez que o assunto de bem-estar e saúde é vasto, esta tese concentra a sua prova de conceito na deteção de quedas dentro de ambientes domésticos, através de uma aplicação android, utilizando um sensor de acelerómetro e um microfone. Os resultados expe- rimentais demonstram que o sistema implementado tem um desempenho superior a 80% e pode fornecer dados fiáveis. Atualmente a aplicação está a ser testada também no âmbito dos projetos da União Europeia Smart4Health e Smart Bear

    Strategic Intelligence Monitor on Personal Health Systems (SIMPHS): Report on Typology/Segmentation of the PHS Market

    Get PDF
    This market segmentation reports for Personal Health Systems (PHS) describes the methodological background and illustrates the principles of classification and typology regarding different fragments forming this market. It discusses different aspects of the market for PHS and highlights challenges towards a stringent and clear-cut typology or defining market segmentation. Based on these findings a preliminary hybrid typology and indications and insights are created in order to be used in the continuation of the SIMPHS project. It concludes with an annex containing examples and cases studies.JRC.DDG.J.4-Information Societ

    Behavioural pattern identification and prediction in intelligent environments

    Get PDF
    In this paper, the application of soft computing techniques in prediction of an occupant's behaviour in an inhabited intelligent environment is addressed. In this research, daily activities of elderly people who live in their own homes suffering from dementia are studied. Occupancy sensors are used to extract the movement patterns of the occupant. The occupancy data is then converted into temporal sequences of activities which are eventually used to predict the occupant behaviour. To build the prediction model, different dynamic recurrent neural networks are investigated. Recurrent neural networks have shown a great ability in finding the temporal relationships of input patterns. The experimental results show that non-linear autoregressive network with exogenous inputs model correctly extracts the long term prediction patterns of the occupant and outperformed the Elman network. The results presented here are validated using data generated from a simulator and real environments

    Progress in ambient assisted systems for independent living by the elderly

    Get PDF
    One of the challenges of the ageing population in many countries is the efficient delivery of health and care services, which is further complicated by the increase in neurological conditions among the elderly due to rising life expectancy. Personal care of the elderly is of concern to their relatives, in case they are alone in their homes and unforeseen circumstances occur, affecting their wellbeing. The alternative; i.e. care in nursing homes or hospitals is costly and increases further if specialized care is mobilized to patients’ place of residence. Enabling technologies for independent living by the elderly such as the ambient assisted living systems (AALS) are seen as essential to enhancing care in a cost-effective manner. In light of significant advances in telecommunication, computing and sensor miniaturization, as well as the ubiquity of mobile and connected devices embodying the concept of the Internet of Things (IoT), end-to-end solutions for ambient assisted living have become a reality. The premise of such applications is the continuous and most often real-time monitoring of the environment and occupant behavior using an event-driven intelligent system, thereby providing a facility for monitoring and assessment, and triggering assistance as and when needed. As a growing area of research, it is essential to investigate the approaches for developing AALS in literature to identify current practices and directions for future research. This paper is, therefore, aimed at a comprehensive and critical review of the frameworks and sensor systems used in various ambient assisted living systems, as well as their objectives and relationships with care and clinical systems. Findings from our work suggest that most frameworks focused on activity monitoring for assessing immediate risks while the opportunities for integrating environmental factors for analytics and decision-making, in particular for the long-term care were often overlooked. The potential for wearable devices and sensors, as well as distributed storage and access (e.g. cloud) are yet to be fully appreciated. There is a distinct lack of strong supporting clinical evidence from the implemented technologies. Socio-cultural aspects such as divergence among groups, acceptability and usability of AALS were also overlooked. Future systems need to look into the issues of privacy and cyber security

    Diffuse Axonal Injury: A Devastating Pathology

    Get PDF
    Traumatic brain injury (TBI) also known as intracranial injury is the result of a lesion within the brain due to an external force. Common forms of TBI result from falls, violence, and/or vehicle crashes; the classification of this pathology is dependent on the severity of the lesion as well as the mechanism of trauma to the head. One of the most common onsets of traumatic brain injuries result from mild to severe lesions to the white matter tracts of the brain called diffuse axonal injury (DAI); however, additional forms of TBI’s can present in non-penetrating forms. Penetrating forms of TBI’s such as trauma to the head via a foreign object do also contribute to the many millions of TBI cases per year, but we will not discuss these traumatic injuries as in depth within this chapter. The onset of diffuse axonal injury will vary on a per-patient basis from mild to severe, based on a standardized neurological examination rated on the Glasgow Coma Scale (GCS), which indicates the severity of brain damage present. While there is a spectrum of severity for DAI patients, a concussion is typically observed within a larger majority of patients in addition to other overwhelming trauma
    • …
    corecore