2,368 research outputs found

    Using evolutionary covariance to infer protein sequence-structure relationships

    Get PDF
    During the last half century, a deep knowledge of the actions of proteins has emerged from a broad range of experimental and computational methods. This means that there are now many opportunities for understanding how the varieties of proteins affect larger scale behaviors of organisms, in terms of phenotypes and diseases. It is broadly acknowledged that sequence, structure and dynamics are the three essential components for understanding proteins. Learning about the relationships among protein sequence, structure and dynamics becomes one of the most important steps for understanding the mechanisms of proteins. Together with the rapid growth in the efficiency of computers, there has been a commensurate growth in the sizes of the public databases for proteins. The field of computational biology has undergone a paradigm shift from investigating single proteins to looking collectively at sets of related proteins and broadly across all proteins. we develop a novel approach that combines the structure knowledge from the PDB, the CATH database with sequence information from the Pfam database by using co-evolution in sequences to achieve the following goals: (a) Collection of co-evolution information on the large scale by using protein domain family data; (b) Development of novel amino acid substitution matrices based on the structural information incorporated; (c) Higher order co-evolution correlation detection. The results presented here show that important gains can come from improvements to the sequence matching. What has been done here is simple and the pair correlations in sequence have been decomposed into singlet terms, which amounts to discarding much of the correlation information itself. The gains shown here are encouraging, and we would like to develop a sequence matching method that retains the pair (or higher order) correlation information, and even higher order correlations directly, and this should be possible by developing the sequence matching separately for different domain structures. The many body correlations in particular have the potential to transform the common perceptions in biology from pairs that are not actually so very informative to higher-order interactions. Fully understanding cellular processes will require a large body of higher-order correlation information such as has been initiated here for single proteins

    Investigation of sequence features of hinge-bending regions in proteins with domain movements using kernel logistic regression

    Get PDF
    Background: Hinge-bending movements in proteins comprising two or more domains form a large class of functional movements. Hinge-bending regions demarcate protein domains and collectively control the domain movement. Consequently, the ability to recognise sequence features of hinge-bending regions and to be able to predict them from sequence alone would benefit various areas of protein research. For example, an understanding of how the sequence features of these regions relate to dynamic properties in multi-domain proteins would aid in the rational design of linkers in therapeutic fusion proteins. Results: The DynDom database of protein domain movements comprises sequences annotated to indicate whether the amino acid residue is located within a hinge-bending region or within an intradomain region. Using statistical methods and Kernel Logistic Regression (KLR) models, this data was used to determine sequence features that favour or disfavour hinge-bending regions. This is a difficult classification problem as the number of negative cases (intradomain residues) is much larger than the number of positive cases (hinge residues). The statistical methods and the KLR models both show that cysteine has the lowest propensity for hinge-bending regions and proline has the highest, even though it is the most rigid amino acid. As hinge-bending regions have been previously shown to occur frequently at the terminal regions of the secondary structures, the propensity for proline at these regions is likely due to its tendency to break secondary structures. The KLR models also indicate that isoleucine may act as a domain-capping residue. We have found that a quadratic KLR model outperforms a linear KLR model and that improvement in performance occurs up to very long window lengths (eighty residues) indicating long-range correlations. Conclusion: In contrast to the only other approach that focused solely on interdomain hinge-bending regions, the method provides a modest and statistically significant improvement over a random classifier. An explanation of the KLR results is that in the prediction of hinge-bending regions a long-range correlation is at play between a small number amino acids that either favour or disfavour hinge-bending regions. The resulting sequence-based prediction tool, HingeSeek, is available to run through a webserver at hingeseek.cmp.uea.ac.uk

    Information Theory in Molecular Evolution: From Models to Structures and Dynamics

    Get PDF
    This Special Issue collects novel contributions from scientists in the interdisciplinary field of biomolecular evolution. Works listed here use information theoretical concepts as a core but are tightly integrated with the study of molecular processes. Applications include the analysis of phylogenetic signals to elucidate biomolecular structure and function, the study and quantification of structural dynamics and allostery, as well as models of molecular interaction specificity inspired by evolutionary cues

    Large margin methods for partner specific prediction of interfaces in protein complexes

    Get PDF
    2014 Spring.The study of protein interfaces and binding sites is a very important domain of research in bioinformatics. Information about the interfaces between proteins can be used not only in understanding protein function but can also be directly employed in drug design and protein engineering. However, the experimental determination of protein interfaces is cumbersome, expensive and not possible in some cases with today's technology. As a consequence, the computational prediction of protein interfaces from sequence and structure has emerged as a very active research area. A number of machine learning based techniques have been proposed for the solution to this problem. However, the prediction accuracy of most such schemes is very low. In this dissertation we present large-margin classification approaches that have been designed to directly model different aspects of protein complex formation as well as the characteristics of available data. Most existing machine learning techniques for this task are partner-independent in nature, i.e., they ignore the fact that the binding propensity of a protein to bind to another protein is dependent upon characteristics of residues in both proteins. We have developed a pairwise support vector machine classifier called PAIRpred to predict protein interfaces in a partner-specific fashion. Due to its more detailed model of the problem, PAIRpred offers state of the art accuracy in predicting both binding sites at the protein level as well as inter-protein residue contacts at the complex level. PAIRpred uses sequence and structure conservation, local structural similarity and surface geometry, residue solvent exposure and template based features derived from the unbound structures of proteins forming a protein complex. We have investigated the impact of explicitly modeling the inter-dependencies between residues that are imposed by the overall structure of a protein during the formation of a protein complex through transductive and semi-supervised learning models. We also present a novel multiple instance learning scheme called MI-1 that explicitly models imprecision in sequence-level annotations of binding sites in proteins that bind calmodulin to achieve state of the art prediction accuracy for this task

    Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements

    Get PDF
    Why is an amino acid replacement in a protein accepted during evolution? The answer given by bioinformatics relies on the frequency of change of each amino acid by another one and the propensity of each to remain unchanged. We propose that these replacement rules are recoverable from the secondary structural trends of amino acids. A distance measure between high-resolution Ramachandran distributions reveals that structurally similar residues coincide with those found in substitution matrices such as BLOSUM: Asn Asp, Phe Tyr, Lys Arg, Gln Glu, Ile Val, Met → Leu; with Ala, Cys, His, Gly, Ser, Pro, and Thr, as structurally idiosyncratic residues. We also found a high average correlation (\overline{R} R = 0.85) between thirty amino acid mutability scales and the mutational inertia (I X ), which measures the energetic cost weighted by the number of observations at the most probable amino acid conformation. These results indicate that amino acid substitutions follow two optimally-efficient principles: (a) amino acids interchangeability privileges their secondary structural similarity, and (b) the amino acid mutability depends directly on its biosynthetic energy cost, and inversely with its frequency. These two principles are the underlying rules governing the observed amino acid substitutions. © 2017 The Author(s)

    Coarse-grained modelling of protein structure and internal dynamics: comparative methods and applications

    Get PDF
    The first chapter is devoted to a brief summary of the basic techniques commonly used to characterise protein's internal dynamics, and to perform those primary analyses which are the basis for our further developments. To this purpose we recall the basics of Principal Component Analysis of the covariance matrix of molecular dynamics (MD) trajectories. The overview is aimed at motivating and justifying a posteriori the introduction of coarse-grained models of proteins. In the second chapter we shall discuss dynamical features shared by different conformers of a protein. We'll review previously obtained results, concerning the universality of the vibrational spectrum of globular proteins and the self-similar free energy landscape of specific molecules, namely the G-protein and Adk. Finally, a novel technique will be discussed, based on the theory of Random Matrices, to extract the robust collective coordinates in a set of protein conformers by comparison with a stochastic reference model. The third chapter reports on an extensive investigation of protein internal dynamics modelled in terms of the relative displacement of quasi-rigid groups of amino acids. Making use of the results obtained in the previous chapters, we shall discuss the development of a strategy to optimally partition a protein in units, or domains, whose internal strain is negligible compared to their relative uctuation. These partitions will be used in turn to characterise the dynamical properties of proteins in the framework of a simplified, coarse-grained, description of their motion. In the fourth chapter we shall report on the possibility to use the collective uctuations of proteins as a guide to recognise relationships between them that may not be captured as significant when sequence or structural alignment methods are used. We shall review a method to perform the superposition of two proteins optimising the similarity of the structures as well as the dynamical consistency of the aligned regions; then, we shall next discuss a generalisation of this scheme to accelerate the dynamics-based alignment, in the perspective of dataset-wide applications. Finally, the fifth chapter focuses on a different topic, namely the occurrence of topologically-entangled states (knots) in proteins. Specifically, we shall investigate the sequence and structural properties of knotted proteins, reporting on an exhaustive dataset-wide comparison with unknotted ones. The correspondence, or the lack thereof, between knotted and unknotted proteins allowed us to identify, in knotted chains, small segments of the backbone whose `virtual' excision results in an unknotted structure. These `knot-promoting' loops are thus hypothesised to be involved in the formation of the protein knot, which in turn is likely to cover some role in the biological function of the knotted proteins

    Inferring Protein-Protein Interactions (PPIs) Based on Computational Methods

    Get PDF

    On the entropy of protein families

    Get PDF
    Proteins are essential components of living systems, capable of performing a huge variety of tasks at the molecular level, such as recognition, signalling, copy, transport, ... The protein sequences realizing a given function may largely vary across organisms, giving rise to a protein family. Here, we estimate the entropy of those families based on different approaches, including Hidden Markov Models used for protein databases and inferred statistical models reproducing the low-order (1-and 2-point) statistics of multi-sequence alignments. We also compute the entropic cost, that is, the loss in entropy resulting from a constraint acting on the protein, such as the fixation of one particular amino-acid on a specific site, and relate this notion to the escape probability of the HIV virus. The case of lattice proteins, for which the entropy can be computed exactly, allows us to provide another illustration of the concept of cost, due to the competition of different folds. The relevance of the entropy in relation to directed evolution experiments is stressed.Comment: to appear in Journal of Statistical Physic
    • …
    corecore