1,841 research outputs found

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF

    Model-based cell tracking and analysis in fluorescence microscopic

    Get PDF

    Toward a morphodynamic model of the cell: Signal processing for cell modeling

    Get PDF
    From a systems biology perspective, the cell is the principal element of information integration. Therefore, understanding the cell in its spatiotemporal context is the key to unraveling many of the still unknown mechanisms of life and disease. This article reviews image processing aspects relevant to the quantification of cell morphology and dynamics. We cover both acquisition (hardware) and analysis (software) related issues, in a multiscale fashion, from the detection of cellular components to the description of the entire cell in relation to its extracellular environment. We then describe ongoing efforts to integrate all this vast and diverse information along with data about the biomechanics of the cell to create a credible model of cell morphology and behavior.Carlos Ortiz-de-Solorzano and Arrate Muñoz-Barrutia were supported by the Spanish Ministry of Economy and Competitiveness grants with reference DPI2012-38090-C03-02 and TEC2013-48552-C02, respectively. Michal Kozubek was supported by the Czech Science Foundation (302/12/G157)

    Globally Optimal Cell Tracking using Integer Programming

    Get PDF
    We propose a novel approach to automatically tracking cell populations in time-lapse images. To account for cell occlusions and overlaps, we introduce a robust method that generates an over-complete set of competing detection hypotheses. We then perform detection and tracking simultaneously on these hypotheses by solving to optimality an integer program with only one type of flow variables. This eliminates the need for heuristics to handle missed detections due to occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging sequences consisting of clumped cells and show that it outperforms state-of-the-art techniques.Comment: Engin T\"uretken and Xinchao Wang contributed equally to this wor

    BactMAP:An R package for integrating, analyzing and visualizing bacterial microscopy data

    Get PDF
    High-throughput analyses of single-cell microscopy data are a critical tool within the field of bacterial cell biology. Several programs have been developed to specifically segment bacterial cells from phase-contrast images. Together with spot and object detection algorithms, these programs offer powerful approaches to quantify observations from microscopy data, ranging from cell-to-cell genealogy to localization and movement of proteins. Most segmentation programs contain specific post-processing and plotting options, but these options vary between programs and possibilities to optimize or alter the outputs are often limited. Therefore, we developed BactMAP (Bacterial toolbox for Microscopy Analysis & Plotting), a command-line based R package that allows researchers to transform cell segmentation and spot detection data generated by different programs into various plots. Furthermore, BactMAP makes it possible to perform custom analyses and change the layout of the output. Because BactMAP works independently of segmentation and detection programs, inputs from different sources can be compared within the same analysis pipeline. BactMAP complies with standard practice in R which enables the use of advanced statistical analysis tools, and its graphic output is compatible with ggplot2, enabling adjustable plot graphics in every operating system. User feedback will be used to create a fully automated Graphical User Interface version of BactMAP in the future. Using BactMAP, we visualize key cell cycle parameters in Bacillus subtilis and Staphylococcus aureus, and demonstrate that the DNA replication forks in Streptococcus pneumoniae dissociate and associate before splitting of the cell, after the Z-ring is formed at the new quarter positions. BactMAP is available from https://veeninglab.com/bactmap

    Single Cell Analysis of Drug Distribution by Intravital Imaging

    Get PDF
    Recent advances in the field of intravital imaging have for the first time allowed us to conduct pharmacokinetic and pharmacodynamic studies at the single cell level in live animal models. Due to these advances, there is now a critical need for automated analysis of pharmacokinetic data. To address this, we began by surveying common thresholding methods to determine which would be most appropriate for identifying fluorescently labeled drugs in intravital imaging. We then developed a segmentation algorithm that allows semi-automated analysis of pharmacokinetic data at the single cell level. Ultimately, we were able to show that drug concentrations can indeed be extracted from serial intravital imaging in an automated fashion. We believe that the application of this algorithm will be of value to the analysis of intravital microscopy imaging particularly when imaging drug action at the single cell level
    corecore