2,324 research outputs found

    Next Generation High Throughput Satellite System

    Get PDF
    This paper aims at presenting an overview of the state-of-the-art in High Throughput Satellite (HTS) systems for Fixed Satellite Services (FSS) and High Density-FSS. Promising techniques and innovative strategies that can enhance system performance are reviewed and analyzed aiming to show what to expect for next generation ultra-high capacity satellite systems. Potential air interface evolutions, efficient frequency plans,feeder link dimensioning strategies and interference cancellation techniques are presented to show how Terabit/s satellite myth may turn into reality real soon

    Performance analysis of joint precoding and MUD techniques in multibeam satellite systems

    Get PDF
    This paper considers interference mitigation techniques in the forward link of multibeam satellite systems. In contrast to previous works, either devoted to receiver interference mitigation (e.g. multiuser detection) or transmitter interference mitigation (precoding), this work evaluates the achievable rates of the joint combination of both techniques. On the one hand, precoding cannot properly mitigate all the inter- beam interference while maintaining a sufficiently high signal-to-noise ratio. On the other hand, the receiver cost and complexity exponentially increases with the number of signals to be simultaneously detected. This highlights that the receiver cannot deal with all the interferences so that in general only 2 signals are jointly detected. As a result, the use of precoding within a coverage area jointly with multiuser detection can both benefit from each other and extremely increase the achievable rates of the system. This is numerically evaluated in a close-to-real coverage area considering simultaneous non-unique decoding strategies. The results show the benefits of this joint scheme that eventually can increase the current precoding performance a 23%.Peer ReviewedPostprint (author's final draft

    Precoding in multigateway multibeam satellite systems

    Get PDF
    This paper considers a multigateway multibeam satellite system with multiple feeds per beam. In these systems, each gateway serves a set of beams (cluster) so that the overall data traffic is generated at different geographical areas. Full frequency reuse among beams is considered so that interference mitigation techniques are mandatory. Precisely, this paper aims at designing the precoding scheme which, in contrast to single gateway schemes, entails two main challenges. First, the precoding matrix shall be separated into feed groups assigned to each gateway. Second, complete channel state information (CSI) is required at each gateway, leading to a large communication overhead. In order to solve these problems, a design based on a regularized singular value block decomposition of the channel matrix is presented so that both intercluster (i.e., beams of different clusters) and intracluster (i.e., beams of the same cluster) interference is minimized. In addition, different gateway cooperative schemes are analyzed in order to keep the inter-gateway communication low. Furthermore, the impact of the feeder link interference (i.e., interference between different feeder links) is analyzed and it is shown both numerically and analytically that the system performance is reduced severely whenever this interference occurs even though precoding reverts this additional interference. Finally, multicast transmission is also considered. Numerical simulations are shown considering the latest fixed broadband communication standard DVB-S2X so that the quantized feedback effect is evaluated. The proposed precoding technique results to achieve a performance close to the single gateway operation even when the cooperation among gateways is low.Postprint (author's final draft

    Precoding in multigateway multibeam satellite systems

    Get PDF
    This paper considers a multigateway multibeam satellite system with multiple feeds per beam. In these systems, each gateway serves a set of beams (cluster) so that the overall data traffic is generated at different geographical areas. Full frequency reuse among beams is considered so that interference mitigation techniques are mandatory. Precisely, this paper aims at designing the precoding scheme which, in contrast to single gateway schemes, entails two main challenges. First, the precoding matrix shall be separated into feed groups assigned to each gateway. Second, complete channel state information (CSI) is required at each gateway, leading to a large communication overhead. In order to solve these problems, a design based on a regularized singular value block decomposition of the channel matrix is presented so that both intercluster (i.e., beams of different clusters) and intracluster (i.e., beams of the same cluster) interference is minimized. In addition, different gateway cooperative schemes are analyzed in order to keep the inter-gateway communication low. Furthermore, the impact of the feeder link interference (i.e., interference between different feeder links) is analyzed and it is shown both numerically and analytically that the system performance is reduced severely whenever this interference occurs even though precoding reverts this additional interference. Finally, multicast transmission is also considered. Numerical simulations are shown considering the latest fixed broadband communication standard DVB-S2X so that the quantized feedback effect is evaluated. The proposed precoding technique results to achieve a performance close to the single gateway operation even when the cooperation among gateways is low.Postprint (author's final draft

    NOMA and interference limited satellite scenarios

    Get PDF
    This paper deals with the problem of non-orthogonal multiple access (NOMA) in multibeam satellite systems, where the signals are jointly precoded. It is considered that the number of frames that are simultaneously transmitted is higher than the number of feeds, reducing the precoding interference mitigation capabilities as the system becomes overloaded. In order to solve this problem, we assume that the satellite user terminals are able to perform multi-user detection to mitigate the interference. In the current NOMA approach, it is assumed a successive interference cancellation (SIC) receiver. To increase the spectral efficiency, this paper investigates NOMA with simultaneous non-unique detection (SND). Compared to the case where user terminals perform single user detection (SUD), conventional scheduling heuristic rules do not longer apply in this scenario. Therefore, different scheduling algorithms are proposed considering both SIC and SND strategies. As the numerical evaluations show, SND yields larger average data rates than the SIC receiver. Concerning the scheduling, the best strategy is to pair users with highly correlated channels and the lowest channel gain difference. It is also shown that the sum-rate can be increased in overloaded satellite systems with respect to satellite scenarios, where the number of transmitted frames and feeds is the same.Peer ReviewedPostprint (author's final draft

    Multicast Multigroup Precoding and User Scheduling for Frame-Based Satellite Communications

    Get PDF
    The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.Comment: Accepted for publication to the IEEE Transactions on Wireless Communications, 201
    • 

    corecore