747 research outputs found

    ADVANCED HASHING SCHEMES FOR PACKETFORWARDING USING SET ASSOCIATIVEMEMORY ARCHITECTURES

    Get PDF
    Building a high performance IP packet forwarding (PF) engine remains a challenge due to increasingly stringent throughput requirements and the growing sizes of IP forwarding tables.The router has to match the incoming packet's IP address against the forwarding table.The matching process has to be done in wire speed which is why scalability and low power consumption are features that PF engines must maintain.It is common for PF engines to use hash tables; however, the classic hashing downsides have to be dealt with (e.g., collisions, worst case memory access time, ... etc.).While open addressing hash tables, in general, provide good average case search performance, their memory utilization and worst case performance can degrade quickly due to collisions that leads to bucket overflows.Set associative memory can be used for hardware implementations of hash tables with the property that each bucket of a hash table can be searched in one memory cycle.Hence, PF engine architectures based on associative memory will outperform those based on the conventional Ternary Content Addressable Memory (TCAM) in terms of power and scalability.The two standard solutions to the overflow problem are either to use some sort of predefined probing (e.g., linear or quadratic) or to use multiple hash functions.This work presents two new hash schemes that extend both aforementioned solutions to tackle the overflow problem efficiently.The first scheme is a hash probing scheme that is called Content-based HAsh Probing, or CHAP.CHAP is a probing scheme that is based on the content of the hash table to avoid the classical side effects of predefined hash probing methods (i.e., primary and secondary clustering phenomena) and at the same time reduces the overflow.The second scheme, called Progressive Hashing, or PH, is a general multiple hash scheme that reduces the overflow as well.PH splits the prefixes into groups where each group is assigned one hash function, then reuse some hash functions in a progressive fashion to reduce the overflow.We show by experimenting with real IP lookup tables that both schemes outperform other hashing schemes

    Modular P2P-Based Approach for RDF Data Storage and Retrieval

    Get PDF
    International audienceOne of the key elements of the Semantic Web is the Resource Description Framework (RDF). Efficient storage and retrieval of RDF data in large scale settings is still challenging and existing solutions are monolithic and thus not very flexible from a software engineering point of view. In this paper, we propose a modular system, based on the scalable Content-Addressable Network (CAN), which gives the possibility to store and retrieve RDF data in large scale settings. We identified and isolated key components forming such system in our design architecture. We have evaluated our system using the Grid'5000 testbed over 300 peers on 75 machines and the outcome of these micro-benchmarks show interesting results in terms of scalability and concurrent queries

    High-Performance Packet Processing Engines Using Set-Associative Memory Architectures

    Get PDF
    The emergence of new optical transmission technologies has led to ultra-high Giga bits per second (Gbps) link speeds. In addition, the switch from 32-bit long IPv4 addresses to the 128-bit long IPv6 addresses is currently progressing. Both factors make it hard for new Internet routers and firewalls to keep up with wire-speed packet-processing. By packet-processing we mean three applications: packet forwarding, packet classification and deep packet inspection. In packet forwarding (PF), the router has to match the incoming packet's IP address against the forwarding table. It then directs each packet to its next hop toward its final destination. A packet classification (PC) engine examines a packet header by matching it against a database of rules, or filters, to obtain the best matching rule. Rules are associated with either an ``action'' (e.g., firewall) or a ``flow ID'' (e.g., quality of service or QoS). The last application is deep packet inspection (DPI) where the firewall has to inspect the actual packet payload for malware or network attacks. In this case, the payload is scanned against a database of rules, where each rule is either a plain text string or a regular expression. In this thesis, we introduce a family of hardware solutions that combine the above requirements. These solutions rely on a set-associative memory architecture that is called CA-RAM (Content Addressable-Random Access Memory). CA-RAM is a hardware implementation of hash tables with the property that each bucket of a hash table can be searched in one memory cycle. However, the classic hashing downsides have to be dealt with, such as collisions that lead to overflow and worst-case memory access time. The two standard solutions to the overflow problem are either to use some predefined probing (e.g., linear or quadratic) or to use multiple hash functions. We present new hash schemes that extend both aforementioned solutions to tackle the overflow problem efficiently. We show by experimenting with real IP lookup tables, synthetic packet classification rule sets and real DPI databases that our schemes outperform other previously proposed schemes

    Scalable and Adaptive Load Balancing on IBM PowerNP

    Get PDF
    Web and other Internet-based server farms are a critical company resource. A solution to the increased complexity of server farms and to the need to improve the server performance in terms of scalability, fault tolerance and management is to implement a load balancing technique. It consists of a front-end machine which intelligently redirects the traffic to several Real Servers. We discuss the feasibility of implementing adaptive load balancing with minimal flow disruption on the IBM PowerNP Network Processor. We focus our attention on the steady-state part of the algorithm and propose a PowerNP-tailored mapping algorithm derived from Robust Hash Mapping. We propose and show a fast algorithm solution (despite the simple arithmetical logic of the PowerNP), as well as a scalable approach (aiming at minimizing the packet processing time) and, finally, we present some initial performance results

    Optimising Structured P2P Networks for Complex Queries

    Get PDF
    With network enabled consumer devices becoming increasingly popular, the number of connected devices and available services is growing considerably - with the number of connected devices es- timated to surpass 15 billion devices by 2015. In this increasingly large and dynamic environment it is important that users have a comprehensive, yet efficient, mechanism to discover services. Many existing wide-area service discovery mechanisms are centralised and do not scale to large numbers of users. Additionally, centralised services suffer from issues such as a single point of failure, high maintenance costs, and difficulty of management. As such, this Thesis seeks a Peer to Peer (P2P) approach. Distributed Hash Tables (DHTs) are well known for their high scalability, financially low barrier of entry, and ability to self manage. They can be used to provide not just a platform on which peers can offer and consume services, but also as a means for users to discover such services. Traditionally DHTs provide a distributed key-value store, with no search functionality. In recent years many P2P systems have been proposed providing support for a sub-set of complex query types, such as keyword search, range queries, and semantic search. This Thesis presents a novel algorithm for performing any type of complex query, from keyword search, to complex regular expressions, to full-text search, over any structured P2P overlay. This is achieved by efficiently broadcasting the search query, allowing each peer to process the query locally, and then efficiently routing responses back to the originating peer. Through experimentation, this technique is shown to be successful when the network is stable, however performance degrades under high levels of network churn. To address the issue of network churn, this Thesis proposes a number of enhancements which can be made to existing P2P overlays in order to improve the performance of both the existing DHT and the proposed algorithm. Through two case studies these enhancements are shown to improve not only the performance of the proposed algorithm under churn, but also the performance of traditional lookup operations in these networks

    Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    Get PDF
    • …
    corecore