513 research outputs found

    Efficient Handoff for QoS Enhancement in Heterogeneous Wireless Networks (UMTS/WLAN Interworking)

    Get PDF
    Today’s Wireless Communications technologies prove us that wireless communications will in the long run be composed of different communication networks as a way to benefit from each other. This can however be achieved from cellular networks and wireless local area networks that show some compatible characteristics that enable them be integrated. Scenarios typically behind these integrations is the UMTS and WLAN interworking where UMTS network is known for its wide area of coverage and nearly roaming however, known for lack of enough data rate. This is contrary with WLAN which is known for high data rate and cheaper compared to UMTS. WLAN however has a small area of coverage and lacks roaming. This in regard brings the idea that the two different networks being integrated could provide the means for mobile users to be gratified with a supported coverage and quality at anywhere and anytime with seamless access to internet

    Network congestion management using Call Admission Control

    Get PDF
    Abstract: Call Admission Control schemes have been used extensively in improving mobile network quality. Signal quality degradation, interference and network congestion has been a real issue for Global System for Mobile Communication (GSM) as the number of mobile users increased rapidly. It has been an issue in providing a decent Quality of Service (QoS) to the network users especially during the period of high network traffic. It is essential to maintain a certain level of quality in handling mobile network congestion. Fortunately, Call Admission Control is a strategy that can provide credible QoS by limiting the number of connections into the cellular network thereby reducing network congestions, dropping of calls, interference and other QoS problems. In this paper, we discuss issues around mobile network congestion, overview of congestion management schemes, attributes and benefits of Call Admission Control (CAC). We also highlight different handoff schemes. We simulated a typical CAC scheme comparing the new call blocking probability and handoff call probability

    Implementation of Vertical Handoff Algorithm between IEEE802.11 WLAN and CDMA Cellular Network

    Get PDF
    Today’s wireless users expect great things from tomorrow’s wireless networks. These expectations have been fueled by hype about what the next generations of wireless networks will offer. The rapid increase of wireless subscribers increases the quality of services anytime, anywhere, and by any-media becoming indispensable. Integration of various networks such as CDMA2000 and wireless LAN into IP-based networks is required in these kinds of services, which further requires a seamless vertical handoff to 4th generation wireless networks. The proposed handoff algorithm between WLAN and CDMA2000 cellular network is implemented. The results of the simulation shows the behavior of the handoff and the time spent in WLAN or CDMA. The number of weak signal beacons determines whether a handoff is required or not. In this algorithm, traffic is classified into real-time and non real-time services

    System modeling and performance evaluation of rate allocation schemes for packet data services in wideband CDMA systems

    Get PDF
    To fully exploit the potential of a wideband CDMA-based mobile Internet computing system, an efficient algorithm is needed for judiciously performing rate allocation, so as to orchestrate and allocate bandwidth for voice services and high data rate applications. However, in existing standards (e.g., cdma2000), only a first-come-first-served equal sharing allocation algorithm is used, potentially leading to a low bandwidth utilization and inadequate support of high data rate multimedia mobile applications (e.g., video/audio files swapping, multimedia messaging services, etc.). In this paper, we first analytically model the rate allocation problem that captures realistic system constraints such as downlink power limits and control, uplink Interference effects, physical channel adaptation, and soft handoff. We then suggest six efficient rate allocation schemes that are designed based on different philosophies: rate optimal, fairness-based, and user-oriented. Simulations are performed to evaluate the effectiveness of the rate allocation schemes using realistic system parameters In our model.published_or_final_versio

    Survey Paper: Mobility Management in Heterogeneous Wireless Networks

    Get PDF
    AbstractEver increasing user demands and development of modern communication technologies have led to the evolution of communication networks from 1st Generation (1G) network to 4G heterogeneous networks. Further, 4G with heterogeneous network environment will provide features such as, “Always Best Connected”, “Anytime Anywhere” and seamless communication. Due to diverse characteristics of heterogeneous networks such as bandwidth, latency, cost, coverage and Quality of Service (QoS) etc., there are several open and unsolved issues namely mobility management, network administration, security etc. Hence, Designing proficient mobility management to seamlessly integrate heterogeneous wireless networks with all-IP is the most challenging issue in 4G networks. Mobile IPv6 (MIPv6) developed by Internet Engineering Task Force (IETF) has mobility management for the packet-switched devices of homogeneous wireless networks. Further, mobility management of homogeneous networks depends on network related parameter i.e., Received Signal Strength (RSS). However the mobility management of heterogeneous networks, not only depends on network related parameters, but also on terminal-velocity, battery power, location information, user-user profile & preferences and service-service capabilities & QoS etc. Designing mobility management with all-IP, while, considering issues such as context of networks, terminal, user and services is the main concern of industry and researchers in the current era

    Soft handover issues in radio resource management for 3G WCDMA networks

    Get PDF
    PhDMobile terminals allow users to access services while on the move. This unique feature has driven the rapid growth in the mobile network industry, changing it from a new technology into a massive industry within less than two decades. Handover is the essential functionality for dealing with the mobility of the mobile users. Compared with the conventional hard handover employed in the GSM mobile networks, the soft handover used in IS-95 and being proposed for 3G has better performance on both link and system level. Previous work on soft handover has led to several algorithms being proposed and extensive research has been conducted on the performance analysis and parameters optimisation of these algorithms. Most of the previous analysis focused on the uplink direction. However, in future mobile networks, the downlink is more likely to be the bottleneck of the system capacity because of the asymmetric nature of new services, such as Internet traffic. In this thesis, an in-depth study of the soft handover effects on the downlink direction of WCDMA networks is carried out, leading to a new method of optimising soft handover for maximising the downlink capacity and a new power control approach

    Wireless Heterogeneous Network

    Get PDF
    Heterogeneous network environment can be viewed as connecting computers and network devices such as switches, repeaters and routers with different protocols and different operating systems which varies in type, size, and topology; differences and how these networks can relate or interact with each other. Heterogeneous networks (HetNets) are an attractive means of expanding or increasing mobile network capacity thereby eradicating the problems to communicate between other networks when switching from one access technology to another. A heterogeneous network is typically composed of multiple radio access technologies, architectures, transmission solutions, and base stations of varying transmission power. Heterogeneous network integrate many up to date wireless technologies together to provide multimedia services by session initiation protocol (SIP) – based Internet protocol (IP) multimedia subsystems via mobile multiple mode devices

    Performance improvements in wireless CDMA communications utilizing adaptive antenna arrays

    Get PDF
    This dissertation studies applications of adaptive antenna arrays and space-time adaptive processing (STAP) in wireless code-division multiple-access (CDMA) communications. The work addresses three aspects of the CDMA communications problems: (I) near-far resistance, (2) reverse link, (3) forward link. In each case, adaptive arrays are applied and their performance is investigated. The near-far effect is a well known problem which affects the reverse link of CDMA communication systems. The near-far resistance of STAP is analyzed for two processing methods: maximal ratio combining and optimum combining. It. is shown that while maximal ratio combining is not near-far resistant, optimum combining is near-far resistant when the number of cochannel interferences is less than the system dimensionality. The near-far effect can be mitigated by accurate power control at the mobile station. With practical limitations, the received signal power at a base station from a power-controlled user is a random variable clue to power control error. The statistical model of signal-to-interference ratio at the antenna array output of a base station is presented, and the outage probability of the CDMA reverse link is analyzed while considering Rayleigh fading, voice activity and power control error. New analytical expressions are obtained and demonstrated by computer simulations. For the application of an adaptive antenna. array at the forward link, a receiver architecture is suggested for the mobile station that utilizes a small two-antenna array For interference suppression. Such a receiver works well only when the channel vector of the desired signal is known. The identifying spreading codes (as in IS-95A for example) are used to provide an adaptive channel vector estimate, and control the beam steering weight, hence improve the receiver performance. Numerical results are presented to illustrate the operation of the proposed receiver model and the improvement in performance and capacity
    • 

    corecore