682 research outputs found

    A spatial interference minimization strategy for the correlated LTE downlink channel

    Get PDF

    Assessing 3GPP LTE-Advanced as IMT-Advanced Technology: The WINNER+ Evaluation Group Approach

    Full text link
    [EN] This article describes the WINNER+ approach to performance evaluation of the 3GPP LTE-Advanced proposal as an IMT-Advanced technology candidate. The official registered WINNER+ Independent Evaluation Group evaluated this proposal against ITU-R requirements. The first part of the article gives an overview of the ITU-R evaluation process, criteria, and scenarios. The second part is focused on the working method of the evaluation group, emphasizing the simulator calibration approach. Finally, the article contains exemplary evaluation results based on analytical and simulation approaches. The obtained results allow WINNER+ to confirm that the 3GPP LTE Release 10 & Beyond (LTE-Advanced) proposal satisfies all the IMT-Advanced requirements, and thus qualifies as an IMT-advanced system.This work has been performed in the framework of the CELTIC project CP5-026 WINNER+. The authors would like to acknowledge the contributions of their colleagues in the WINNER+ consortium. The authors wish to thank colleagues from Ericsson, Per Skillermark and Johnan Nystrom, for their effort in leading the simulations part of the WINNER+ evaluation group. The work of David Martin-Sacristan was supported by an FPU grant of the Spanish Ministry of Education.Safjan, K.; D'amico, V.; Bültmann, D.; Martín-Sacristán, D.; Saadani, A.; Schöneich, H. (2011). Assessing 3GPP LTE-Advanced as IMT-Advanced Technology: The WINNER+ Evaluation Group Approach. IEEE Communications Magazine. 49(2):92-100. doi:10.1109/MCOM.2011.5706316S9210049

    Over-the-air test configurations for MIMO in Long Term Evolution

    Get PDF
    One of the main challenges for the mobile industry is the growing demand for the high speed mobile data. The 3GPP (3rd Generation Partner Project) is the organization that specifies most mobile data communication standards used globally. For the demand for high data rates, 3GPP has specified LTE (Long Term Evolution). One solution included in LTE among many is the MIMO (Multiple Input Multiple Output) technology. This thesis discusses the basic features included in LTE Release 9 focusing on MIMO-technology. This thesis also discusses the MIMO-OTA (Over-the-Air) testing configurations introduced in 3GPP Technical Report 37.976. These configurations are divided into two main types: anechoic chamber-based environments and reverberation chamber-based environments. 3GPP divides these two methods into five different anechoic chamber methods and two reverberation chamber methods. Testing MIMO-technology in LTE introduces new requirements for OTA-testing. While test requirements for GSM and WCDMA networks have included TRS (Total Radiated Sensitivity) and TRP (Total Radiated Power), the LTE MIMO testing adds the requirements for throughput testing. When using MIMO-configurations, the throughput depends on power transmitted to UE (User Equipment) that depends on the position of the UE. Addition to that, the throughput also depends on used TM (Transmission Mode). So test specifications need to include throughput tests for all TMs. Performance of TMs and the overall performance of MIMO cannot be tested in traditional OTA-measurement chambers because the transmission channels in traditional OTA-chambers are configured to be as simple as possible, so that the power and sensitivity measurements could be repeatable. Suggestions for LTE testing chambers have included configuring the transmission channel to be more versatile. This has been achieved by methods such as using multiple antennas or including a channel emulator to the system. Using these methods, the UE’s MIMO performance can be tested in different channel environments in laboratory, therefore improving possibilities for research and development.Opinnäytetyössä tutkittiin LTE-teknologian perusperiaatteita keskittyen siihen sisälletyn MIMO-tekniikan toimintaan. Opinnäytetyö tutki myös 3GPP:n TR 37.976 -raportissa esiteltyjä testausympäristövaihtoehtoja. Nämä jakautuvat 2 pääkategoriaan: kaiuttoman kammion järjestelmiin ja heijastavan kammion järjestelmiin. 3GPP jakaa nämä vielä 5:een eri kaiuttoman kammion järjestelmään ja 2:een heijastamattoman kammion järjestelmään. MIMO-tekniikan testaaminen LTE-teknologiassa asettaa suuria vaatimuksia OTA-testaamiselle. GSM- ja WCDMA-verkkojen testaamiseen ovat riittäneet vain herkkyysmittaukset (Total Radiated Sensitivity, TRS) ja tehomittaukset (Total Radiated Power, TRP). LTE:n MIMO-tekniikka lisää testausvaatimuksiin tiedonsiirtonopeuden, joka on MIMO-tekniikkaa käytettäessä riippuvainen herkkyydestä ja lähetetystä sekä vastaanotetusta tehosta, jotka riippuvat puhelimen asennosta. Näiden lisäksi tiedonsiirtonopeus riippuu myös MIMO:n käyttämien siirtotapojen (Transmission Mode, TM) toiminnasta. Siirtotapojen ja MIMO:n toimintaa ei pystytä testaamaan perinteisissä OTA-mittauskammioissa, sillä näissä siirtokanava on yritetty tehdä yksinkertaiseksi, jotta tehojen ja herkkyyden mittaukset olisivat mahdollisimman toistettavia. LTE:n MIMO-testauksen vaatimissa mittauskammioissa on pyritty tekemään siirtokanavasta mahdollisimman monimuotoinen. Tähän on pyritty eri ympäristövaihtoehdoissa erilaisin menetelmin, kuten käyttäen useaa antennia tai kanavaemulaattoria. Tällöin pystytään testaamaan laitteen MIMO:n toimintaa erilaisissa reaalimaailman ympäristöissä laboratorio-olosuhteissa
    corecore