6,352 research outputs found

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    A Brain Storm Optimization with Multiinformation Interactions for Global Optimization Problems

    Get PDF
    The original BSO fails to consider some potential information interactions in its individual update pattern, causing the premature convergence for complex problems. To address this problem, we propose a BSO algorithm with multi-information interactions (MIIBSO). First, a multi-information interaction (MII) strategy is developed, thoroughly considering various information interactions among individuals. Specially, this strategy contains three new MII patterns. The first two patterns aim to reinforce information interaction capability between individuals. The third pattern provides interactions between the corresponding dimensions of different individuals. The collaboration of the above three patterns is established by an individual stagnation feedback (ISF) mechanism, contributing to preserve the diversity of the population and enhance the global search capability for MIIBSO. Second, a random grouping (RG) strategy is introduced to replace both the K-means algorithm and cluster center disruption of the original BSO algorithm, further enhancing the information interaction capability and reducing the computational cost of MIIBSO. Finally, a dynamic difference step-size (DDS), which can offer individual feedback information and improve search range, is designed to achieve an effective balance between global and local search capability for MIIBSO. By combining the MII strategy, RG, and DDS, MIIBSO achieves the effective improvement in the global search ability, convergence speed, and computational cost. MIIBSO is compared with 11 BSO algorithms and five other algorithms on the CEC2013 test suit. The results confirm that MIIBSO obtains the best global search capability and convergence speed amongst the 17 algorithms

    A Simple Brain Storm Optimization Algorithm with a Periodic Quantum Learning Strategy

    Get PDF
    Brain storm optimization (BSO) is a young and promising population-based swarm intelligence algorithm inspired by the human process of brainstorming. The BSO algorithm has been successfully applied to both science and engineering issues. However, thus far, most BSO algorithms are prone to fall into local optima when solving complicated optimization problems. In addition, these algorithms adopt complicated clustering strategies such as K-means clustering, resulting in large computational burdens. The paper proposes a simple BSO algorithm with a periodic quantum learning strategy (SBSO-PQLS), which includes three new strategies developed to improve the defects described above. First, we develop a simple individual clustering (SIC) strategy that sorts individuals according to their fitness values and then allocates all individuals into different clusters. This reduces computational burdens and resists premature convergence. Second, we present a simple individual updating (SIU) strategy by simplifying the individual combinations and improving the step size function to enrich the diversity of newly generated individuals and reduces redundancy in the pattern for generating individuals. Third, a quantum-behaved individual updating with periodic learning (QBIU-PL) strategy is developed by introducing a quantum-behaved mechanism into SBSO-PQLS. QBIU-PL provides new momentum, enabling individuals to escape local optima. With the support of these three strategies, SBSO-PQLS effectively improves its global search capability and computational burdens. SBSO-PQLS is compared with seven other BSO variants, Particle Swarm Optimization (PSO), and Differential Evolution (DE) on CEC2013 benchmark functions. The results show that SBSO-PQLS achieves a better global search performance than do the other nine algorithms

    Unsupervised-Learning Assisted Artificial Neural Network for Optimization

    Get PDF
    Innovations in computer technology made way for Computational Fluid Dynamics (CFD) into engineering, which supported the development of new designs by reducing the cost and time by lowering the dependency on experimentation. There is a further need to make the process of development more efficient. One such technology is Artificial Intelligence. In this thesis, we explore the application of Artificial Intelligence (AI) in CFD and how it can improve the process of development. AI is used as a buzz word for the mechanism which can learn by itself and make the decision accordingly. Machine learning (ML) is a subset of AI which learns any method without the need for any explicit algorithm. Deep Learning is another subset of ML, which is different in its composition. Deep Learning, or Neural Networks (NN), is made up of nodes like the neurons and works on the principle of the human brain. NN can be exploited for any problem without the need for any explicit algorithm for the task. It can be achieved by analyzing and inferring from the observations. Artificial Neural Network (ANN) is used for data analysis and Convolutional Neural Networks (CNN) for image analysis. Our area of interest herein is ANN and its application for a medical equipment called Convective Polymerase Chain Reaction (cPCR) device. Many have relied on engineering experimentation to develop an optimized PCR device, which requires high cost and time. That makes the use of PCR devices less cost-effective as a commonplace for healthcare. We optimize a convective PCR reactor using a high-fidelity CFD-based surrogate model to find an economical and performance-effective one. We plan numerous possible design combinations, evaluating DNA doubling time. Based on these results, an accurate surrogate model is developed for optimization using Deep Learning. We produce two kinds of surrogate models using ANN; one by directly employing ANN and another by using unsupervised learning called, k-Means-Clustering-Assisted ANN, and then compare the results from these two methods. For developing a suitable model of ANN to fit our data, we carry out the analysis of model accuracy and obtain the best design by using a differential evolution method. The best designs obtained by the two methods are verified with the corresponding result obtained from CFD. This shows an effective way of designing an optimized device by reducing the number of CFD simulations required for the development. Consequently, the computational results demonstrate that the convective PCR device can be efficiently developed using our proposed methodology, making it viable for point-of-care applications

    A unified approach to linking experimental, statistical and computational analysis of spike train data

    Get PDF
    A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach – linking statistical, computational, and experimental neuroscience – provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.Published versio

    A Vector Grouping Learning Brain Storm Optimization Algorithm for Global Optimization Problems

    Get PDF
    The original brain storm optimization (BSO) method does not rationally compromise global exploration and local exploitation capability, which results in the premature convergence when solving complicated optimization problems like the shifted or shifted rotated functions. To address this problem, the paper develops a vector grouping learning BSO (VGLBSO) method. In VGLBSO, the individuals’ creation based on vector grouping learning (IC-VGL) scheme is first developed to improve the population diversity and compromise the global exploration and local exploitation capability. Moreover, a hybrid individuals’ update (H-IU) scheme is established by reasonably combing two different individuals’ update schemes, which further compromises the global exploration and local exploitation capability. Finally, the random grouping (RG) scheme, instead of K-means grouping is allowed to shrink the computational cost and maintain the diversity of the information exchange between different individuals. Twenty-eight popular benchmark functions are used to compare VGLBSO with 12 BSO and nine swarm intelligence methods. Experimental results present that VGLBSO achieves the best overall performance including the global search ability, convergence speed, and scalability amongst all the compared algorithms
    • …
    corecore