471 research outputs found

    09501 Abstracts Collection -- Software Synthesis

    Get PDF
    From 06.12.09 to 11.12.09, the Dagstuhl Seminar 09501 ``Software Synthesis \u27\u27 in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Fault-tolerant computer study

    Get PDF
    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed

    Invariant preservation in geo-replicated data stores

    Get PDF
    The Internet has enabled people from all around the globe to communicate with each other in a matter of milliseconds. This possibility has a great impact in the way we work, behave and communicate, while the full extent of possibilities are yet to be known. As we become more dependent of Internet services, the more important is to ensure that these systems operate correctly, with low latency and high availability for millions of clients scattered all around the globe. To be able to provide service to a large number of clients, and low access latency for clients in different geographical locations, Internet services typically rely on georeplicated storage systems. Replication comes with costs that may affect service quality. To propagate updates between replicas, systems either choose to lose consistency in favor of better availability and latency (weak consistency), or maintain consistency, but the system might become unavailable during partitioning (strong consistency). In practice, many production systems rely on weak consistency storage systems to enhance user experience, overlooking that applications can become incorrect due to the weaker consistency assumptions. In this thesis, we study how to exploit application’s semantics to build correct applications without affecting the availability and latency of operations. We propose a new consistency model that breaks apart from traditional knowledge that applications consistency is dependent on coordinating the execution of operations across replicas. We show that it is possible to execute most operations with low latency and in an highly available way, while preserving application’s correctness. Our approach consists in specifying the fundamental properties that define the correctness of applications, i.e. the application invariants, and identify and prevent concurrent executions that potentially can make the state of the database inconsistent, i.e. that may violate some invariant. We explore different, complementary, approaches to implement this model. The Indigo approach consists in preventing conflicting operations from executing concurrently, by restricting the operations that each replica can execute at each moment to maintain application’s correctness. The IPA approach does not preclude the execution of any operation, ensuring high availability. To maintain application correctness, operations are modified to prevent invariant violations during replica reconciliation, or, if modifying operations provides an unsatisfactory semantics, it is possible to correct any invariant violations before a client can read an inconsistent state, by executing compensations. Evaluation shows that our approaches can ensure both low latency and high availability for most operations in common Internet application workloads, with small execution overhead in comparison to unmodified weak consistency systems, while enforcing application invariants, as in strong consistency systems

    Design analysis of levitation facility for space processing applications

    Get PDF
    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand
    • …
    corecore