29,744 research outputs found

    Photoionization of few electron systems with a hybrid Coupled Channels approach

    Get PDF
    We present the hybrid anti-symmetrized coupled channels method for the calculation of fully differential photo-electron spectra of multi-electron atoms and small molecules interacting with strong laser fields. The method unites quantum chemical few-body electronic structure with strong-field dynamics by solving the time dependent Schr\"odinger equation in a fully anti-symmetrized basis composed of multi-electron states from quantum chemistry and a one-electron numerical basis. Photoelectron spectra are obtained via the time dependent surface flux (tSURFF) method. Performance and accuracy of the approach are demonstrated for spectra from the helium and berryllium atoms and the hydrogen molecule in linearly polarized laser fields at wavelength from 21 nm to 400 nm. At long wavelengths, helium and the hydrogen molecule at equilibrium inter-nuclear distance can be approximated as single channel systems whereas beryllium needs a multi-channel description

    Requirement for quantum computation

    Get PDF
    We identify "proper quantum computation" with computational processes that cannot be efficiently simulated on a classical computer. For optical quantum computation, we establish "no-go" theorems for classes of quantum optical experiments that cannot yield proper quantum computation, and we identify requirements for optical proper quantum computation that correspond to violations of assumptions underpinning the no-go theorems.Comment: 11 pages, no figure
    • …
    corecore