22,553 research outputs found

    Semantic processing of EHR data for clinical research

    Get PDF
    There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data.Comment: Accepted for publication in Journal of Biomedical Informatics, 2015, preprint versio

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    Semantic Storage: Overview and Assessment

    No full text
    The Semantic Web has a great deal of momentum behind it. The promise of a ‘better web’, where information is given well defined meaning and computers are better able to work with it has captured the imagination of a significant number of people, particularly in academia. Language standards such as RDF and OWL have appeared with remarkable speed, and development continues apace. To back up this development, there is a requirement for ‘semantic databases’, where this data can be conveniently stored, operated upon, and retrieved. These already exist in the form of triple stores, but do not yet fulfil all the requirements that may be made of them, particularly in the area of performing inference using OWL. This paper analyses the current stores along with forthcoming technology, and finds that it is unlikely that a combination of speed, scalability, and complex inferencing will be practical in the immediate future. It concludes by suggesting alternative development routes

    Constraint-based Query Distribution Framework for an Integrated Global Schema

    Full text link
    Distributed heterogeneous data sources need to be queried uniformly using global schema. Query on global schema is reformulated so that it can be executed on local data sources. Constraints in global schema and mappings are used for source selection, query optimization,and querying partitioned and replicated data sources. The provided system is all XML-based which poses query in XML form, transforms, and integrates local results in an XML document. Contributions include the use of constraints in our existing global schema which help in source selection and query optimization, and a global query distribution framework for querying distributed heterogeneous data sources.Comment: The Proceedings of the 13th INMIC 2009), Dec. 14-15, 2009, Islamabad, Pakistan. Pages 1 - 6 Print ISBN: 978-1-4244-4872-2 INSPEC Accession Number: 11072575 Date of Current Version : 15 January 201

    Mapping languages analysis of comparative characteristics

    Get PDF
    RDF generation processes are becoming more interoperable, reusable, and maintainable due to the increased usage of mapping languages: languages used to describe how to generate an RDF graph from (semi-)structured data. This gives rise to new mapping languages, each with different characteristics. However, it is not clear which mapping language is fit for a given task. Thus, a comparative framework is needed. In this paper, we investigate a set of mapping languages that inhibit complementary characteristics, and present an initial set of comparative characteristics based on requirements as put forward by the reference works of those mapping languages. Initial investigation found 9 broad characteristics, classified in 3 categories. To further formalize and complete the set of characteristics, further investigation is needed, requiring a joint effort of the community
    corecore