197 research outputs found

    A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells

    Get PDF
    Lithium-ion cells currently power almost all electronic devices and power tools; they are a key enabling technology for electric vehicles and are increasingly considered to be the technology of choice for grid storage. In line with this increased applicability, there is also an increase in the development of new commercial lithium-ion cell technologies that incorporate innovative functional components (electrode material compositions and electrolyte formulations) and designs, leading to a diverse range of performance characteristics. The uniqueness of each technology in-turn gives rise to unique evolutions of cell performance as the cell degrades because of usage. Non-destructively measuring and subsequently tracking the evolution of lithium-ion cell characteristics is valuable for both industrial engineers and academic researchers. To proceed in this regard, stakeholders have often devised their own procedures for characterising lithium-ion cells, typically without considering unification, comparability or compatibility. This makes the comparison of technologies complicated. This comprehensive review for the first time has analysed and discusses the various international standards and regulations for the characterisation and electrical testing of lithium-ion cells, specifically for high-power automotive and grid applications

    Analysis and Modeling of Capacity Fading in Lithium Ion Batteries

    Get PDF
    Lithium ion batteries, Capacity fade, Physics-based model, Physico chemical model, Chemo-mechanical model.physico-chemical and chemo-mechanical model, are then developed to describe and quantify the identified degradation mechanisms. The developed capacity fade models are used to study the nature of different cell design parameters and adhesive strength on the specific capacity and stability of Li ion cells. A time-effective accelerated capacity fading analysis method for Li ion batteries is proposed using the developed physico-chemical model and a pseudo-two-dimensional model. The developed capacity fade models improve the prediction and quantification of the degradation mechanisms of high energy density electrode active materials. This will enhance the effective integration of high energy density electrode active material into LIBs and thereby resolve the issues related to mileage requirement and reliability of LIBs for EVs. The findings presented in this work is of both technological and commercial interestsThe distinctive intrinsic electrochemical characteristics of lithium ion batteries (LIBs) have made them a suitable energy storage device for many electrical storage applications such as electric vehicles (EVs) and energy storage systems (ESS). Yet, concerns about the mileage requirement, reliability and safety of LIBs for EV application remain a major drawback. To meet the mileage requirements, there is the need to increase the energy density of LIBs for EVs. This can be achieved by replacing the conventional cathode and anode active material with a higher energy density active material. However, these materials suffer from severe capacity fade. The physical and chemical degradation mechanisms for the severe capacity fade are diverse, complicated and interdependent, and very difficult to understand. Yet, there are limited reliable and practical methods for detecting, predicting and quantifying these degradation phenomena. This thesis presents a non-destructive capacity-fading analysis method to identify the various degradation mechanisms of high energy density active materials for Li ion cells. The key objective of this method is the extraction of information on degradation from physics-based model parameters that changes with cycling via a parameter estimation technique. Comprehensive capacity-fading modelsYList of figures ……………………………………………………………… …………xii List of tables …………………………………………………………….…….… …. xvi Nomenclature …………………………………………………………………………xvii 1 Introduction and literature review 1 1.1 Introduction 1 1.2 Post-mortem analysis methods 8 1.2.1 Surface sensitive chemical analysis methods 9 1.2.2 Bulk electrode chemical analysis methods 11 1.2.3 Electrolyte analysis methods 12 1.3 Battery performance-based analysis methods 14 1.3.1 Electrochemical voltage spectroscopy 14 1.3.2 Identification and tracking of model parameters 17 1.4 Capacity fade modeling 19 1.4.1 Empirical modeling method 20 1.4.2 Physics-based models 24 1.5 Focus and objectives 30 1.6 Outline 32 2 Capacity fade analysis of spinel-based cathode materials 34 2.1 Introduction 34 2.2 Experiment 36 2.3 Results and discussion 37 2.3.1 Parameter Estimation 37 2.3.2 Model prediction 41 2.3.3 Analysis of capacity fade 45 2.4 Conclusion 47 3 A capacity fade model for spinel-based cathode materials 48 3.1 Introduction 48 3.2. Model development 50 3.2.1 Modeling of Mn2+ dissolution in the cathode 50 3.2.2 Modeling of CEI formation in the cathode 52 3.2.3 Modeling of the SEI and Mn side reactions at the anode 54 3.3. Parameter estimation 58 3.4. Results and discussion 59 3.5. Conclusion 69 4 Application of capacity fade model: Accelerated cyclic aging analysis 70 4.1 Introduction 70 4.2 Methodology 72 4.2.1 Experimental data collection 73 4.2.2 Simple empirical life model (SELM) development 74 4.3 Results and discussion 74 4.4 Conclusion 83 5 Capacity fade analysis of anode materials with huge volume expansion 84 5.1 Introduction 84 5.2 Experiment 86 5.2.1 Treatment of Cu current collector with Polydopamine 86 5.2.2 Preparation of Electrode 86 5.2.3 Assembling of cell 86 5.2.4 Measurement of electrochemical performance 87 5.3 Results and discussion 87 5.3.1 Parameter Estimation 87 5.3.2 Model Predictions 91 5.3.3 Capacity fade analysis 94 5.4 Conclusion 102 6 A chemo-mechanical degradation model 103 6.1 Introduction 103 6.2 Model development 104 6.2.1 Modeling of SEI formation 105 6.2.2 Modeling of contact resistance 110 6.2.3 Modeling of particle isolation 114 6.2.4 Modeling of Li ions inventory 115 6.2.5 Modeling the effect of the PD interlayer 117 6.2.6 Coupling between lithiation kinetics and mechanical stress 118 6. 3 Pseudo-two-Dimensional (P2D) model – Incorporation 120 6. 4 Results and discussion 121 6.4.1 Model validation 121 6.4.2 Simulation results 123 6. 5 Conclusion 129 7 Application of chemo mechanical model 130 7.1 Introduction 130 7.2 Experiment 132 7.3 Results and discussion 133 7.3.1 Experimental results 133 7.3.2 Model validation 135 7.3.3 Simulation results 137 7.4 Conclusion 145 8 Conclusion and future work 146 8.1 Contributions 146 8.1.1 Multiphysics-based model capacity fade analysis 147 8.1.2 A capacity fade model for spinel-based cathode materials 148 8.1.3 A time effective cyclic accelerated aging analysis framework 148 8.1.4 A chemo mechanical degradation model 149 8.1.5 Practical relevance 150 8.2 Future work 152 8.2.1 Modeling of Ni-rich cathode materials 152 8.2.2 Exploring the negative side of adhesive thin film interlayers 152 8.2.3 Investigation into degradation mechanisms of large format Li ion cells 153 8.2.4 Short term future research 153 References 158 Appendix A 174 A.1 Model development: SEI formation at cathode 174 A.2 Transport equations 175 Appendix B 179 B.1 Expressions 179 Appendix C 181 C.1 Li ions inventory in Si electrode 181 C.2 Effect of polydopamine design on degradation parameters 181 List of figures 1.1. Ragonne plot of various cell chemistries 2 1.2. Specific energy density from pack to materials level 3 1.3. Degradation mechanism of Si anodes 5 1.4. Layered-to-spinel transformation of Ni-rich cathode materials 6 1.5. Correlation between (a) voltage profile and (b) IC and (c) DV 15 1.6. Degradation mechanisms in Li-ion cells 19 1.7. Schematic diagram of Li ion battery P2D model 25 1.8. Schematic diagram of single particle model (SPM) 28 2.1. Discharge capacity retention of LiMn2O4/graphite cells at 25 and 60 °C. 37 2.2. Comparison of experimental discharge profiles and model-prediction 38 2.3. Changes in degradation parameters of LiMn2O4/graphite cells 40 2.4. Predicted SOC at the EOD at (a) 25 °C and (b) 60 °C 41 2.5. Extrapolation of the model parameters 42 2.6. Physics-based and empirical model prediction at (a) 25 and (b) 60 °C 43 2.7. The predicted SOCs for the positive and negative electrode at the EOD 44 3.1. Physico-chemical degradation model best fit of experimental data 60 3.2. Correlation between Li ion transport and SOC at 25 °C and 60 °C 62 3.3. Concentration profile of the solvent species at the film/electrode interphase 63 3.4. Film resistance at the end of the discharge in the cathode and anode 64 3.5. Relative volume fraction of the active cathode material at 25 ºC and 60 ºC 65 3.6. (a) Changes in the cell capacity retention at different cut off volatges and, (b) Model best-fit to experimental data . 66 3.7. Cycle performance at different discharge rates . 67 3.8. Relative contribution of degradation mechanisms to capacity fade. 68 4.1. Summary of proposed accelerated cyclic aging analysis framework 73 4.2. Experimental results of discharge-capacity retention of LiMn2O4/graphite cells cycled at temperatures of 25 and 60 ºC 75 4.3. Physics-based model best fit to experimental data 76 4.4. Simulated (a) cycling performance, (b) diffusion coefficient constant of the cathode, (c) cathode electrolyte interphase (CEI) resistance and (d) solid electrolyte interphase (SEI) resistance, at various temperatures 78 4.5. Simulations using SELM and PCM–PCEM at different temperatures. 79 4.6. Dependence of (a) capacity-fade constant, and (b) power-law factor on temperature.. 80 4.7. Qualitative analysis of electrochemical voltage spectroscopy . 81 4.8. Predicted number of cycles at different temperatures as a function of………..83 5.1. Comparison of experimental discharge profiles and model predictions. 88 5.2. The changes of model parameters with cycling 90 5.3. The simulated SOCs for the Si/Li half-cells. 91 5.4. The extrapolation of the physics-based P2D model parameters 92 5.5. Comparison of physics-based and empirical model predictions 93 5.6. The predicted SOCs for the bare and PD-treated Cu current collectors 94 5.7. The formation mechanism of EMDOHC and LiEDC 96 5.8. The percentage of Li ion loss in Si/Li cells 98 5.9. The net loss of Li ions in Si/Li cells 99 5.10. Relative contribution of degradation mechanisms to capacity fade. 101 5.11. Schematic diagram showing the effect of the polydopamine interlayer on the number of isolated particles after several cycles.. 101 6.1. Degradation mechanisms of Si electrode with PD-interlayer between the Cu current collector and the composite electrode. 105 6.2. Block diagram of Li ions inventory in the Si electrode 115 6.3. Schematic diagram of the cross section of the cell modeled in this study 120 6.4. Chemo-mechanical degradation model best of experimental data. 123 6.5. Changes in the film resistance and the surface area. 124 6.6. Correlation between the electron transfer rate constant and number of cycles for the PD-treated and bare Cu current collector. 125 6.7. Changes in (a) initial SOC, (b) SOC at EOC and Simulated fractional Li ion loss in Li/Si cells 126 6.8. Relative contribution of various degradation mechanisms 128 7.1. Schematic diagram of cell designs used in this study 133 7.2. Experimental rate performance and the Peukert coefficient of the Li/Si 134 7.3. Experimental and simulation voltage profiles of the three cells 137 7.4. Simulated salt concentration profiles across the Si composite electrode . 138 7.5. Simulated Li ion concentration in the solid phase across the Si composite 139 7.6. (a) Contact resistance and (b) Adhesive strength . 141 7.7. Specific capacity as a function of cell design parameters. 142 7.8. Effect of PD film design parameters on capacity retention 144 C.1. Li ions inventory in the Si composite electrode . 181 C.2. Effect of adhesion strength between Si composite electron an Cu current collector on (a) contact resistance and (b) Li ions loss to isolation. 181 C.3. Effect of various PD film (a) thickness (coverage = 1), (b) thickness (coverage = 0.8) on the rate constant. 182 C.4. Effect of various PD film coverage on the reaction rate constant. 182 C.5. Effect of PD film coverage on (a) contact resistance and (b) Li ions loss to isolation. 183 List of tables 1.1. The governing equations of P2D model 26 2.1. Design parameters, used in this study. 38 2.2. Mathematical expression used for the extrapolation in Figure 2.5 41 2.3. Empirical model expressions 44 3.1. Model parameters. 58 4.1. Equations for predicting the accelerated capacity-fade 78 5.1. Model parameters used in this study 88 5.2. Empirical model expressions and parameters 93 6.1. Table of parameters used for the model prediction. 121리튬이온전지는 우수한 전기화학 특성으로 인해 전기자동차 및 에너지저장시스템 등, 다양한 에너지 저장 분야에 사용되고 있다. 특히, 전기자동차의 경우, 마일리지 확보뿐만 아니라 안전성 및 안정성에 대한 확보가 필수적이다. 전기자동차의 마일리지를 확보하기 위해서는 리튬이온전지의 에너지밀도를 증가시키는 방법이 있다. 예를 들어, 고용량 에너지 밀도를 갖는 활물질로 교체함으로써 전지의 용량을 증가시킬 수 있다. 그러나, 이러한 활물질의 적용은 심각한 전지의 용량감소로 이어질 수 있다. 이러한 용량 감소를 예측하기 위해선, 전지 내 복잡한 전기화학적 특성을 이해해야 한다. 하지만, 이런 모든 열화현상을 반영하여 전지의 수명을 예측 및 열화 요소를 정량화한 방법이 매우 부족한 실정이다. 본 논문은 고에너지밀도 활물질을 가진 리튬이온전지의 다양한 열화메카니즘을 확인할 수 있는 비파괴 용량감소 분석법을 제안한다. 핵심은 모델의 물리적 파라미터로부터 특정 열화 정보를 추출하는 것이다. 해당 물리적 파라미터는 파라미터 평가법 (Parameter Estimation Technique)에 의해 사이클이 반복됨에 따라 변한다. 이러한 통합적인 용량감소모델은 물리화학적 및 화학역학적 (Physico-Chemical and Chemo-Mechanical Model)모델을 기반으로 하며, 더 나아가 특정 열화메카니즘을 이해 및 정량화를 위해 모델을 응용 및 개선하였다. 수정된 용량 감소 모델은 리튬이온전지의 용량 및 안전성에 대한 다양한 전지설계 파라미터 및 접착 강도의 특성을 연구하는데 사용된다. 또한 계산의 효율성을 확보하기 위해, 물리 화학적 모델 및 P2D 모델 (Pseudo-Two-Dimensional Model)이 사용되었다. 개선 및 응용된 모델은 고에너지밀도 기반 활물질의 열화메카니즘을 예측 및 정량화를 향상시킬 수 있다. 이에 따라, 고에너지밀도를 가지는 전극의 활물질을 리튬이온전지에 효과적으로 적용함으로써 높은 마일리지 및 안정성을 확보한 전기자동차에 확장 가능하다. 이러한 발견은 기술 및 상업적 이익의 측면 모두에 적합하다.DoctordCollectio

    Next generation automotive embedded systems-on-chip and their applications

    Get PDF
    It is a well known fact in the automotive industry that critical and costly delays in the development cycle of powertrain1 controllers are unavoidable due to the complex nature of the systems-on-chip used in them. The primary goal of this portfolio is to show the development of new methodologies for the fast and efficient implementation of next generation powertrain applications and the associated automotive qualified systems-on-chip. A general guideline for rapid automotive applications development, promoting the integration of state-of-the-art tools and techniques necessary, is presented. The methods developed in this portfolio demonstrate a new and better approach to co-design of automotive systems that also raises the level of design abstraction.An integrated business plan for the development of a camless engine controller platform is presented. The plan provides details for the marketing plan, management and financial data.A comprehensive real-time system level development methodology for the implementation of an electromagnetic actuator based camless internal combustion engine is developed. The proposed development platform enables developers to complete complex software and hardware development before moving to silicon, significantly shortening the development cycle and improving confidence in the design.A novel high performance internal combustion engine knock processing strategy using the next generation automotive system-on-chip, particularly highlighting the capabilities of the first-of-its-kind single-instruction-multiple-data micro-architecture is presented. A patent application has been filed for the methodology and the details of the invention are also presented.Enhancements required for the performance optimisation of several resource properties such as memory accesses, energy consumption and execution time of embedded powertrain applications running on the developed system-on-chip and its next generation of devices is proposed. The approach used allows the replacement of various software segments by hardware units to speed up processing.1 Powertrain: A name applied to the group of components used to transmit engine power to the driving wheels. It can consist of engine, clutch, transmission, universal joints, drive shaft, differential gear, and axle shafts

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    Real-time multi-domain optimization controller for multi-motor electric vehicles using automotive-suitable methods and heterogeneous embedded platforms

    Get PDF
    Los capítulos 2,3 y 7 están sujetos a confidencialidad por el autor. 145 p.In this Thesis, an elaborate control solution combining Machine Learning and Soft Computing techniques has been developed, targeting a chal lenging vehicle dynamics application aiming to optimize the torque distribution across the wheels with four independent electric motors.The technological context that has motivated this research brings together potential -and challenges- from multiple dom ains: new automotive powertrain topologies with increased degrees of freedom and controllability, which can be approached with innovative Machine Learning algorithm concepts, being implementable by exploiting the computational capacity of modern heterogeneous embedded platforms and automated toolchains. The complex relations among these three domains that enable the potential for great enhancements, do contrast with the fourth domain in this context: challenging constraints brought by industrial aspects and safe ty regulations. The innovative control architecture that has been conce ived combines Neural Networks as Virtual Sensor for unmeasurable forces , with a multi-objective optimization function driven by Fuzzy Logic , which defines priorities basing on the real -time driving situation. The fundamental principle is to enhance vehicle dynamics by implementing a Torque Vectoring controller that prevents wheel slip using the inputs provided by the Neural Network. Complementary optimization objectives are effici ency, thermal stress and smoothness. Safety -critical concerns are addressed through architectural and functional measures.Two main phases can be identified across the activities and milestones achieved in this work. In a first phase, a baseline Torque Vectoring controller was implemented on an embedded platform and -benefiting from a seamless transition using Hardware-in -the -Loop - it was integrated into a real Motor -in -Wheel vehicle for race track tests. Having validated the concept, framework, methodology and models, a second simulation-based phase proceeds to develop the more sophisticated controller, targeting a more capable vehicle, leading to the final solution of this work. Besides, this concept was further evolved to support a joint research work which lead to outstanding FPGA and GPU based embedded implementations of Neural Networks. Ultimately, the different building blocks that compose this work have shown results that have met or exceeded the expectations, both on technical and conceptual level. The highly non-linear multi-variable (and multi-objective) control problem was tackled. Neural Network estimations are accurate, performance metrics in general -and vehicle dynamics and efficiency in particular- are clearly improved, Fuzzy Logic and optimization behave as expected, and efficient embedded implementation is shown to be viable. Consequently, the proposed control concept -and the surrounding solutions and enablers- have proven their qualities in what respects to functionality, performance, implementability and industry suitability.The most relevant contributions to be highlighted are firstly each of the algorithms and functions that are implemented in the controller solutions and , ultimately, the whole control concept itself with the architectural approaches it involves. Besides multiple enablers which are exploitable for future work have been provided, as well as an illustrative insight into the intricacies of a vivid technological context, showcasing how they can be harmonized. Furthermore, multiple international activities in both academic and professional contexts -which have provided enrichment as well as acknowledgement, for this work-, have led to several publications, two high-impact journal papers and collateral work products of diverse nature

    Design and Optimization for Resilient Energy Efficient Computing

    Get PDF
    Heutzutage sind moderne elektronische Systeme ein integraler Bestandteil unseres Alltags. Dies wurde unter anderem durch das exponentielle Wachstum der Integrationsdichte von integrierten Schaltkreisen ermöglicht zusammen mit einer Verbesserung der Energieeffizienz, welche in den letzten 50 Jahren stattfand, auch bekannt als Moore‘s Gesetz. In diesem Zusammenhang ist die Nachfrage von energieeffizienten digitalen Schaltkreisen enorm angestiegen, besonders in Anwendungsfeldern wie dem Internet of Things (IoT). Da der Leistungsverbrauch von Schaltkreisen stark mit der Versorgungsspannung verknüpft ist, wurden effiziente Verfahren entwickelt, welche die Versorgungsspannung in den nahen Schwellenspannung-Bereich skalieren, zusammengefasst unter dem Begriff Near-Threshold-Computing (NTC). Mithilfe dieser Verfahren kann eine Erhöhung der Energieeffizienz von Schaltungen um eine ganze Größenordnung ermöglicht werden. Neben der verbesserten Energiebilanz ergeben sich jedoch zahlreiche Herausforderungen was den Schaltungsentwurf angeht. Zum Beispiel führt das Reduzieren der Versorgungsspannung in den nahen Schwellenspannungsbereich zu einer verzehnfachten Erhöhung der Sensibilität der Schaltkreise gegenüber Prozessvariation, Spannungsfluktuationen und Temperaturveränderungen. Die Einflüsse dieser Variationen reduzieren die Zuverlässigkeit von NTC Schaltkreisen und sind ihr größtes Hindernis bezüglich einer umfassenden Nutzung. Traditionelle Ansätze und Methoden aus dem nominalen Spannungsbereich zur Kompensation von Variabilität können nicht effizient angewandt werden, da die starken Performance-Variationen und Sensitivitäten im nahen Schwellenspannungsbereich dessen Kapazitäten übersteigen. Aus diesem Grund sind neue Entwurfsparadigmen und Entwurfsautomatisierungskonzepte für die Anwendung von NTC erforderlich. Das Ziel dieser Arbeit ist die zuvor erwähnten Probleme durch die Bereitstellung von ganzheitlichen Methoden zum Design von NTC Schaltkreisen sowie dessen Entwurfsautomatisierung anzugehen, welche insbesondere auf der Schaltungs- sowie Logik-Ebene angewandt werden. Dabei werden tiefgehende Analysen der Zuverlässigkeit von NTC Systemen miteinbezogen und Optimierungsmethoden werden vorgeschlagen welche die Zuverlässigkeit, Performance und Energieeffizienz verbessern. Die Beiträge dieser Arbeit sind wie folgt: Schaltungssynthese und Timing Closure unter Einbezug von Variationen: Das Einhalten von Anforderungen an das zeitliche Verhalten und Zuverlässigkeit von NTC ist eine anspruchsvolle Aufgabe. Die Auswirkungen von Variabilität kommen bei starken Performance-Schwankungen, welche zu teuren zeitlichen Sicherheitsmargen führen, oder sich in Hold-Time Verstößen ausdrücken, verursacht durch funktionale Störungen, zum Vorschein. Die konventionellen Ansätze beschränken sich dabei alleine auf die Erhöhung von zeitlichen Sicherheitsmargen. Dies ist jedoch sehr ineffizient für NTC, wegen dem starken Ausmaß an Variationen und den erhöhten Leckströmen. In dieser Arbeit wird ein Konzept zur Synthese und Timing Closure von Schaltkreisen unter Variationen vorgestellt, welches sowohl die Sensitivität gegenüber Variationen reduziert als auch die Energieeffizienz, Performance und Zuverlässigkeit verbessert und zugleich den Mehraufwand von Timing Closures [1, 2] verringert. Simulationsergebnisse belegen, dass unser vorgeschlagener Ansatz die Verzögerungszeit um 87% reduziert und die Performance und Energieeffizienz um 25% beziehungsweise 7.4% verbessert, zu Kosten eines erhöhten Flächenbedarfs von 4.8%. Schichtübergreifende Zuverlässigkeits-, Energieeffizienz- und Performance-Optimierung von Datenpfaden: Schichtübergreifende Analyse von Prozessor-Datenpfaden, welche den ganzen Weg spannen vom Kompilierer zum Schaltungsentwurf, kann potenzielle Optimierungsansätze aufzeigen. Ein Datenpfad ist eine Kombination von mehreren funktionalen Einheiten, welche diverse Instruktionen verarbeiten können. Unsere Analyse zeigt, dass die Ausführungszeiten von Instruktionen bei niedrigen Versorgungsspannungen stark variieren, weshalb eine Klassifikation in schnelle und langsame Instruktionen vorgenommen werden kann. Des Weiteren können funktionale Instruktionen als häufig und selten genutzte Instruktionen kategorisiert werden. Diese Arbeit stellt eine Multi-Zyklen-Instruktionen-Methode vor, welche die Energieeffizienz und Belastbarkeit von funktionalen Einheiten erhöhen kann [3]. Zusätzlich stellen wir einen Partitionsalgorithmus vor, welcher ein fein-granulares Power-gating von selten genutzten Einheiten ermöglicht [4] durch Partition von einzelnen funktionalen Einheiten in mehrere kleinere Einheiten. Die vorgeschlagenen Methoden verbessern das zeitliche Schaltungsverhalten signifikant, und begrenzen zugleich die Leckströme beträchtlich, durch Einsatz einer Kombination von Schaltungs-Redesign- und Code-Replacement-Techniken. Simulationsresultate zeigen, dass die entwickelten Methoden die Performance und Energieeffizienz von arithmetisch-logischen Einheiten (ALU) um 19% beziehungsweise 43% verbessern. Des Weiteren kann der Zuwachs in Performance der optimierten Schaltungen in eine Verbesserung der Zuverlässigkeit umgewandelt werden [5, 6]. Post-Fabrication und Laufzeit-Tuning: Prozess- und Laufzeitvariationen haben einen starken Einfluss auf den Minimum Energy Point (MEP) von NTC-Schaltungen, welcher mit der energieeffizientesten Versorgungsspannung assoziiert ist. Es ist ein besonderes Anliegen, die NTC-Schaltung nach der Herstellung (post-fabrication) so zu kalibrieren, dass sich die Schaltung im MEP-Zustand befindet, um die beste Energieeffizient zu erreichen. In dieser Arbeit, werden Post-Fabrication und Laufzeit-Tuning vorgeschlagen, welche die Schaltung basierend auf Geschwindigkeits- und Leistungsverbrauch-Messungen nach der Herstellung auf den MEP kalibrieren. Die vorgestellten Techniken ermitteln den MEP per Chip-Basis um den Einfluss von Prozessvariationen mit einzubeziehen und dynamisch die Versorgungsspannung und Frequenz zu adaptieren um zeitabhängige Variationen wie Workload und Temperatur zu adressieren. Zu diesem Zweck wird in die Firmware eines Chips ein Regression-Modell integriert, welches den MEP basierend auf Workload- und Temperatur-Messungen zur Laufzeit extrahiert. Das Regressions-Modell ist für jeden Chip einzigartig und basiert lediglich auf Post-Fabrication-Messungen. Simulationsergebnisse zeigen das der entwickelte Ansatz eine sehr hohe prognostische Treffsicherheit und Energieeffizienz hat, ähnlich zu hardware-implementierten Methoden, jedoch ohne hardware-seitigen Mehraufwand [7, 8]. Selektierte Flip-Flop Optimierung: Ultra-Low-Voltage Schaltungen müssen im nominalen Versorgungsspannungs-Mode arbeiten um zeitliche Anforderungen von laufenden Anwendungen zu erfüllen. In diesem Fall ist die Schaltung von starken Alterungsprozessen betroffen, welche die Transistoren durch Erhöhung der Schwellenspannungen degradieren. Unsere tiefgehenden Analysen haben gezeigt das gewisse Flip-Flop-Architekturen von diesen Alterungserscheinungen beeinflusst werden indem fälschlicherweise konstante Werte ( \u270\u27 oder \u271\u27) für eine lange Zeit gespeichert sind. Im Vergleich zu anderen Komponenten sind Flip-Flops sensitiver zu Alterungsprozessen und versagen unter anderem dabei einen neuen Wert innerhalb des vorgegebenen zeitlichen Rahmens zu übernehmen. Außerdem kann auch ein geringfügiger Spannungsabfall zu diesen zeitlichen Verstößen führen, falls die betreffenden gealterten Flip-Flops zum kritischen Pfad zuzuordnen sind. In dieser Arbeit wird eine selektiver Flip-Flop-Optimierungsmethode vorgestellt, welche die Schaltungen bezüglich Robustheit gegen statische Alterung und Spannungsabfall optimieren. Dabei werden zuerst optimierte robuste Flip-Flops generiert und diese dann anschließend in die Standard-Zellen-Bibliotheken integriert. Flip-Flops, die in der Schaltung zum kritischen Pfad gehören und Alterung sowie Spannungsabfall erfahren, werden durch die optimierten robusten Versionen ersetzt, um das Zeitverhalten und die Zuverlässigkeit der Schaltung zu verbessern [9, 10]. Simulationsergebnisse zeigen, dass die erwartete Lebenszeit eines Prozessors um 37% verbessert werden kann, während Leckströme um nur 0.1% erhöht werden. Während NTC das Potenzial hat große Energieeffizienz zu ermöglichen, ist der Einsatz in neue Anwendungsfeldern wie IoT wegen den zuvor erwähnten Problemen bezüglich der hohen Sensitivität gegenüber Variationen und deshalb mangelnder Zuverlässigkeit, noch nicht durchsetzbar. In dieser Dissertation und in noch nicht publizierten Werken [11–17], stellen wir Lösungen zu diesen Problemen vor, die eine Integration von NTC in heutige Systeme ermöglichen

    Cross-Layer Rapid Prototyping and Synthesis of Application-Specific and Reconfigurable Many-accelerator Platforms

    Get PDF
    Technological advances of recent years laid the foundation consolidation of informatisationof society, impacting on economic, political, cultural and socialdimensions. At the peak of this realization, today, more and more everydaydevices are connected to the web, giving the term ”Internet of Things”. The futureholds the full connection and interaction of IT and communications systemsto the natural world, delimiting the transition to natural cyber systems and offeringmeta-services in the physical world, such as personalized medical care, autonomoustransportation, smart energy cities etc. . Outlining the necessities of this dynamicallyevolving market, computer engineers are required to implement computingplatforms that incorporate both increased systemic complexity and also cover awide range of meta-characteristics, such as the cost and design time, reliabilityand reuse, which are prescribed by a conflicting set of functional, technical andconstruction constraints. This thesis aims to address these design challenges bydeveloping methodologies and hardware/software co-design tools that enable therapid implementation and efficient synthesis of architectural solutions, which specifyoperating meta-features required by the modern market. Specifically, this thesispresents a) methodologies to accelerate the design flow for both reconfigurableand application-specific architectures, b) coarse-grain heterogeneous architecturaltemplates for processing and communication acceleration and c) efficient multiobjectivesynthesis techniques both at high abstraction level of programming andphysical silicon level.Regarding to the acceleration of the design flow, the proposed methodologyemploys virtual platforms in order to hide architectural details and drastically reducesimulation time. An extension of this framework introduces the systemicco-simulation using reconfigurable acceleration platforms as co-emulation intermediateplatforms. Thus, the development cycle of a hardware/software productis accelerated by moving from a vertical serial flow to a circular interactive loop.Moreover the simulation capabilities are enriched with efficient detection and correctiontechniques of design errors, as well as control methods of performancemetrics of the system according to the desired specifications, during all phasesof the system development. In orthogonal correlation with the aforementionedmethodological framework, a new architectural template is proposed, aiming atbridging the gap between design complexity and technological productivity usingspecialized hardware accelerators in heterogeneous systems-on-chip and networkon-chip platforms. It is presented a novel co-design methodology for the hardwareaccelerators and their respective programming software, including the tasks allocationto the available resources of the system/network. The introduced frameworkprovides implementation techniques for the accelerators, using either conventionalprogramming flows with hardware description language or abstract programmingmodel flows, using techniques from high-level synthesis. In any case, it is providedthe option of systemic measures optimization, such as the processing speed,the throughput, the reliability, the power consumption and the design silicon area.Finally, on addressing the increased complexity in design tools of reconfigurablesystems, there are proposed novel multi-objective optimization evolutionary algo-rithms which exploit the modern multicore processors and the coarse-grain natureof multithreaded programming environments (e.g. OpenMP) in order to reduce theplacement time, while by simultaneously grouping the applications based on theirintrinsic characteristics, the effectively explore the design space effectively.The efficiency of the proposed architectural templates, design tools and methodologyflows is evaluated in relation to the existing edge solutions with applicationsfrom typical computing domains, such as digital signal processing, multimedia andarithmetic complexity, as well as from systemic heterogeneous environments, suchas a computer vision system for autonomous robotic space navigation and manyacceleratorsystems for HPC and workstations/datacenters. The results strengthenthe belief of the author, that this thesis provides competitive expertise to addresscomplex modern - and projected future - design challenges.Οι τεχνολογικές εξελίξεις των τελευταίων ετών έθεσαν τα θεμέλια εδραίωσης της πληροφοριοποίησης της κοινωνίας, επιδρώντας σε οικονομικές,πολιτικές, πολιτιστικές και κοινωνικές διαστάσεις. Στο απόγειο αυτής τη ςπραγμάτωσης, σήμερα, ολοένα και περισσότερες καθημερινές συσκευές συνδέονται στο παγκόσμιο ιστό, αποδίδοντας τον όρο «Ίντερνετ των πραγμάτων».Το μέλλον επιφυλάσσει την πλήρη σύνδεση και αλληλεπίδραση των συστημάτων πληροφορικής και επικοινωνιών με τον φυσικό κόσμο, οριοθετώντας τη μετάβαση στα συστήματα φυσικού κυβερνοχώρου και προσφέροντας μεταυπηρεσίες στον φυσικό κόσμο όπως προσωποποιημένη ιατρική περίθαλψη, αυτόνομες μετακινήσεις, έξυπνες ενεργειακά πόλεις κ.α. . Σκιαγραφώντας τις ανάγκες αυτής της δυναμικά εξελισσόμενης αγοράς, οι μηχανικοί υπολογιστών καλούνται να υλοποιήσουν υπολογιστικές πλατφόρμες που αφενός ενσωματώνουν αυξημένη συστημική πολυπλοκότητα και αφετέρου καλύπτουν ένα ευρύ φάσμα μεταχαρακτηριστικών, όπως λ.χ. το κόστος σχεδιασμού, ο χρόνος σχεδιασμού, η αξιοπιστία και η επαναχρησιμοποίηση, τα οποία προδιαγράφονται από ένα αντικρουόμενο σύνολο λειτουργικών, τεχνολογικών και κατασκευαστικών περιορισμών. Η παρούσα διατριβή στοχεύει στην αντιμετώπιση των παραπάνω σχεδιαστικών προκλήσεων, μέσω της ανάπτυξης μεθοδολογιών και εργαλείων συνσχεδίασης υλικού/λογισμικού που επιτρέπουν την ταχεία υλοποίηση καθώς και την αποδοτική σύνθεση αρχιτεκτονικών λύσεων, οι οποίες προδιαγράφουν τα μετα-χαρακτηριστικά λειτουργίας που απαιτεί η σύγχρονη αγορά. Συγκεκριμένα, στα πλαίσια αυτής της διατριβής, παρουσιάζονται α) μεθοδολογίες επιτάχυνσης της ροής σχεδιασμού τόσο για επαναδιαμορφούμενες όσο και για εξειδικευμένες αρχιτεκτονικές, β) ετερογενή αδρομερή αρχιτεκτονικά πρότυπα επιτάχυνσης επεξεργασίας και επικοινωνίας και γ) αποδοτικές τεχνικές πολυκριτηριακής σύνθεσης τόσο σε υψηλό αφαιρετικό επίπεδο προγραμματισμού,όσο και σε φυσικό επίπεδο πυριτίου.Αναφορικά προς την επιτάχυνση της ροής σχεδιασμού, προτείνεται μια μεθοδολογία που χρησιμοποιεί εικονικές πλατφόρμες, οι οποίες αφαιρώντας τις αρχιτεκτονικές λεπτομέρειες καταφέρνουν να μειώσουν σημαντικά το χρόνο εξομοίωσης. Παράλληλα, εισηγείται η συστημική συν-εξομοίωση με τη χρήση επαναδιαμορφούμενων πλατφορμών, ως μέσων επιτάχυνσης. Με αυτόν τον τρόπο, ο κύκλος ανάπτυξης ενός προϊόντος υλικού, μετατεθειμένος από την κάθετη σειριακή ροή σε έναν κυκλικό αλληλεπιδραστικό βρόγχο, καθίσταται ταχύτερος, ενώ οι δυνατότητες προσομοίωσης εμπλουτίζονται με αποδοτικότερες μεθόδους εντοπισμού και διόρθωσης σχεδιαστικών σφαλμάτων, καθώς και μεθόδους ελέγχου των μετρικών απόδοσης του συστήματος σε σχέση με τις επιθυμητές προδιαγραφές, σε όλες τις φάσεις ανάπτυξης του συστήματος. Σε ορθογώνια συνάφεια με το προαναφερθέν μεθοδολογικό πλαίσιο, προτείνονται νέα αρχιτεκτονικά πρότυπα που στοχεύουν στη γεφύρωση του χάσματος μεταξύ της σχεδιαστικής πολυπλοκότητας και της τεχνολογικής παραγωγικότητας, με τη χρήση συστημάτων εξειδικευμένων επιταχυντών υλικού σε ετερογενή συστήματα-σε-ψηφίδα καθώς και δίκτυα-σε-ψηφίδα. Παρουσιάζεται κατάλληλη μεθοδολογία συν-σχεδίασης των επιταχυντών υλικού και του λογισμικού προκειμένου να αποφασισθεί η κατανομή των εργασιών στους διαθέσιμους πόρους του συστήματος/δικτύου. Το μεθοδολογικό πλαίσιο προβλέπει την υλοποίηση των επιταχυντών είτε με συμβατικές μεθόδους προγραμματισμού σε γλώσσα περιγραφής υλικού είτε με αφαιρετικό προγραμματιστικό μοντέλο με τη χρήση τεχνικών υψηλού επιπέδου σύνθεσης. Σε κάθε περίπτωση, δίδεται η δυνατότητα στο σχεδιαστή για βελτιστοποίηση συστημικών μετρικών, όπως η ταχύτητα επεξεργασίας, η ρυθμαπόδοση, η αξιοπιστία, η κατανάλωση ενέργειας και η επιφάνεια πυριτίου του σχεδιασμού. Τέλος, προκειμένου να αντιμετωπισθεί η αυξημένη πολυπλοκότητα στα σχεδιαστικά εργαλεία επαναδιαμορφούμενων συστημάτων, προτείνονται νέοι εξελικτικοί αλγόριθμοι πολυκριτηριακής βελτιστοποίησης, οι οποίοι εκμεταλλευόμενοι τους σύγχρονους πολυπύρηνους επεξεργαστές και την αδρομερή φύση των πολυνηματικών περιβαλλόντων προγραμματισμού (π.χ. OpenMP), μειώνουν το χρόνο επίλυσης του προβλήματος της τοποθέτησης των λογικών πόρων σε φυσικούς,ενώ ταυτόχρονα, ομαδοποιώντας τις εφαρμογές βάση των εγγενών χαρακτηριστικών τους, διερευνούν αποτελεσματικότερα το χώρο σχεδίασης.Η αποδοτικότητά των προτεινόμενων αρχιτεκτονικών προτύπων και μεθοδολογιών επαληθεύτηκε σε σχέση με τις υφιστάμενες λύσεις αιχμής τόσο σε αυτοτελής εφαρμογές, όπως η ψηφιακή επεξεργασία σήματος, τα πολυμέσα και τα προβλήματα αριθμητικής πολυπλοκότητας, καθώς και σε συστημικά ετερογενή περιβάλλοντα, όπως ένα σύστημα όρασης υπολογιστών για αυτόνομα διαστημικά ρομποτικά οχήματα και ένα σύστημα πολλαπλών επιταχυντών υλικού για σταθμούς εργασίας και κέντρα δεδομένων, στοχεύοντας εφαρμογές υψηλής υπολογιστικής απόδοσης (HPC). Τα αποτελέσματα ενισχύουν την πεποίθηση του γράφοντα, ότι η παρούσα διατριβή παρέχει ανταγωνιστική τεχνογνωσία για την αντιμετώπιση των πολύπλοκων σύγχρονων και προβλεπόμενα μελλοντικών σχεδιαστικών προκλήσεων

    Battery Systems and Energy Storage beyond 2020

    Get PDF
    Currently, the transition from using the combustion engine to electrified vehicles is a matter of time and drives the demand for compact, high-energy-density rechargeable lithium ion batteries as well as for large stationary batteries to buffer solar and wind energy. The future challenges, e.g., the decarbonization of the CO2-intensive transportation sector, will push the need for such batteries even more. The cost of lithium ion batteries has become competitive in the last few years, and lithium ion batteries are expected to dominate the battery market in the next decade. However, despite remarkable progress, there is still a strong need for improvements in the performance of lithium ion batteries. Further improvements are not only expected in the field of electrochemistry but can also be readily achieved by improved manufacturing methods, diagnostic algorithms, lifetime prediction methods, the implementation of artificial intelligence, and digital twins. Therefore, this Special Issue addresses the progress in battery and energy storage development by covering areas that have been less focused on, such as digitalization, advanced cell production, modeling, and prediction aspects in concordance with progress in new materials and pack design solutions

    Embedded electronic systems driven by run-time reconfigurable hardware

    Get PDF
    Abstract This doctoral thesis addresses the design of embedded electronic systems based on run-time reconfigurable hardware technology –available through SRAM-based FPGA/SoC devices– aimed at contributing to enhance the life quality of the human beings. This work does research on the conception of the system architecture and the reconfiguration engine that provides to the FPGA the capability of dynamic partial reconfiguration in order to synthesize, by means of hardware/software co-design, a given application partitioned in processing tasks which are multiplexed in time and space, optimizing thus its physical implementation –silicon area, processing time, complexity, flexibility, functional density, cost and power consumption– in comparison with other alternatives based on static hardware (MCU, DSP, GPU, ASSP, ASIC, etc.). The design flow of such technology is evaluated through the prototyping of several engineering applications (control systems, mathematical coprocessors, complex image processors, etc.), showing a high enough level of maturity for its exploitation in the industry.Resumen Esta tesis doctoral abarca el diseño de sistemas electrónicos embebidos basados en tecnología hardware dinámicamente reconfigurable –disponible a través de dispositivos lógicos programables SRAM FPGA/SoC– que contribuyan a la mejora de la calidad de vida de la sociedad. Se investiga la arquitectura del sistema y del motor de reconfiguración que proporcione a la FPGA la capacidad de reconfiguración dinámica parcial de sus recursos programables, con objeto de sintetizar, mediante codiseño hardware/software, una determinada aplicación particionada en tareas multiplexadas en tiempo y en espacio, optimizando así su implementación física –área de silicio, tiempo de procesado, complejidad, flexibilidad, densidad funcional, coste y potencia disipada– comparada con otras alternativas basadas en hardware estático (MCU, DSP, GPU, ASSP, ASIC, etc.). Se evalúa el flujo de diseño de dicha tecnología a través del prototipado de varias aplicaciones de ingeniería (sistemas de control, coprocesadores aritméticos, procesadores de imagen, etc.), evidenciando un nivel de madurez viable ya para su explotación en la industria.Resum Aquesta tesi doctoral està orientada al disseny de sistemes electrònics empotrats basats en tecnologia hardware dinàmicament reconfigurable –disponible mitjançant dispositius lògics programables SRAM FPGA/SoC– que contribueixin a la millora de la qualitat de vida de la societat. S’investiga l’arquitectura del sistema i del motor de reconfiguració que proporcioni a la FPGA la capacitat de reconfiguració dinàmica parcial dels seus recursos programables, amb l’objectiu de sintetitzar, mitjançant codisseny hardware/software, una determinada aplicació particionada en tasques multiplexades en temps i en espai, optimizant així la seva implementació física –àrea de silici, temps de processat, complexitat, flexibilitat, densitat funcional, cost i potència dissipada– comparada amb altres alternatives basades en hardware estàtic (MCU, DSP, GPU, ASSP, ASIC, etc.). S’evalúa el fluxe de disseny d’aquesta tecnologia a través del prototipat de varies aplicacions d’enginyeria (sistemes de control, coprocessadors aritmètics, processadors d’imatge, etc.), demostrant un nivell de maduresa viable ja per a la seva explotació a la indústria
    corecore