2,592 research outputs found

    Multidimensional integration in a heterogeneous network environment

    Get PDF
    We consider several issues related to the multidimensional integration using a network of heterogeneous computers. Based on these considerations, we develop a new general purpose scheme which can significantly reduce the time needed for evaluation of integrals with CPU intensive integrands. This scheme is a parallel version of the well-known adaptive Monte Carlo method (the VEGAS algorithm), and is incorporated into a new integration package which uses the standard set of message-passing routines in the PVM software system.Comment: 19 pages, latex, 5 postscript figures include

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given

    State-of-the-Art in Parallel Computing with R

    Get PDF
    R is a mature open-source programming language for statistical computing and graphics. Many areas of statistical research are experiencing rapid growth in the size of data sets. Methodological advances drive increased use of simulations. A common approach is to use parallel computing. This paper presents an overview of techniques for parallel computing with R on computer clusters, on multi-core systems, and in grid computing. It reviews sixteen different packages, comparing them on their state of development, the parallel technology used, as well as on usability, acceptance, and performance. Two packages (snow, Rmpi) stand out as particularly useful for general use on computer clusters. Packages for grid computing are still in development, with only one package currently available to the end user. For multi-core systems four different packages exist, but a number of issues pose challenges to early adopters. The paper concludes with ideas for further developments in high performance computing with R. Example code is available in the appendix

    A statistical approach to the inverse problem in magnetoencephalography

    Full text link
    Magnetoencephalography (MEG) is an imaging technique used to measure the magnetic field outside the human head produced by the electrical activity inside the brain. The MEG inverse problem, identifying the location of the electrical sources from the magnetic signal measurements, is ill-posed, that is, there are an infinite number of mathematically correct solutions. Common source localization methods assume the source does not vary with time and do not provide estimates of the variability of the fitted model. Here, we reformulate the MEG inverse problem by considering time-varying locations for the sources and their electrical moments and we model their time evolution using a state space model. Based on our predictive model, we investigate the inverse problem by finding the posterior source distribution given the multiple channels of observations at each time rather than fitting fixed source parameters. Our new model is more realistic than common models and allows us to estimate the variation of the strength, orientation and position. We propose two new Monte Carlo methods based on sequential importance sampling. Unlike the usual MCMC sampling scheme, our new methods work in this situation without needing to tune a high-dimensional transition kernel which has a very high cost. The dimensionality of the unknown parameters is extremely large and the size of the data is even larger. We use Parallel Virtual Machine (PVM) to speed up the computation.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS716 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Components and Interfaces of a Process Management System for Parallel Programs

    Full text link
    Parallel jobs are different from sequential jobs and require a different type of process management. We present here a process management system for parallel programs such as those written using MPI. A primary goal of the system, which we call MPD (for multipurpose daemon), is to be scalable. By this we mean that startup of interactive parallel jobs comprising thousands of processes is quick, that signals can be quickly delivered to processes, and that stdin, stdout, and stderr are managed intuitively. Our primary target is parallel machines made up of clusters of SMPs, but the system is also useful in more tightly integrated environments. We describe how MPD enables much faster startup and better runtime management of parallel jobs. We show how close control of stdio can support the easy implementation of a number of convenient system utilities, even a parallel debugger. We describe a simple but general interface that can be used to separate any process manager from a parallel library, which we use to keep MPD separate from MPICH.Comment: 12 pages, Workshop on Clusters and Computational Grids for Scientific Computing, Sept. 24-27, 2000, Le Chateau de Faverges de la Tour, Franc

    MPICH-G2: A Grid-Enabled Implementation of the Message Passing Interface

    Full text link
    Application development for distributed computing "Grids" can benefit from tools that variously hide or enable application-level management of critical aspects of the heterogeneous environment. As part of an investigation of these issues, we have developed MPICH-G2, a Grid-enabled implementation of the Message Passing Interface (MPI) that allows a user to run MPI programs across multiple computers, at the same or different sites, using the same commands that would be used on a parallel computer. This library extends the Argonne MPICH implementation of MPI to use services provided by the Globus Toolkit for authentication, authorization, resource allocation, executable staging, and I/O, as well as for process creation, monitoring, and control. Various performance-critical operations, including startup and collective operations, are configured to exploit network topology information. The library also exploits MPI constructs for performance management; for example, the MPI communicator construct is used for application-level discovery of, and adaptation to, both network topology and network quality-of-service mechanisms. We describe the MPICH-G2 design and implementation, present performance results, and review application experiences, including record-setting distributed simulations.Comment: 20 pages, 8 figure

    Parallel software tools at Langley Research Center

    Get PDF
    This document gives a brief overview of parallel software tools available on the Intel iPSC/860 parallel computer at Langley Research Center. It is intended to provide a source of information that is somewhat more concise than vendor-supplied material on the purpose and use of various tools. Each of the chapters on tools is organized in a similar manner covering an overview of the functionality, access information, how to effectively use the tool, observations about the tool and how it compares to similar software, known problems or shortfalls with the software, and reference documentation. It is primarily intended for users of the iPSC/860 at Langley Research Center and is appropriate for both the experienced and novice user

    Execution replay and debugging

    Full text link
    As most parallel and distributed programs are internally non-deterministic -- consecutive runs with the same input might result in a different program flow -- vanilla cyclic debugging techniques as such are useless. In order to use cyclic debugging tools, we need a tool that records information about an execution so that it can be replayed for debugging. Because recording information interferes with the execution, we must limit the amount of information and keep the processing of the information fast. This paper contains a survey of existing execution replay techniques and tools.Comment: In M. Ducasse (ed), proceedings of the Fourth International Workshop on Automated Debugging (AADebug 2000), August 2000, Munich. cs.SE/001003

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Beyond XSPEC: Towards Highly Configurable Analysis

    Full text link
    We present a quantitative comparison between software features of the defacto standard X-ray spectral analysis tool, XSPEC, and ISIS, the Interactive Spectral Interpretation System. Our emphasis is on customized analysis, with ISIS offered as a strong example of configurable software. While noting that XSPEC has been of immense value to astronomers, and that its scientific core is moderately extensible--most commonly via the inclusion of user contributed "local models"--we identify a series of limitations with its use beyond conventional spectral modeling. We argue that from the viewpoint of the astronomical user, the XSPEC internal structure presents a Black Box Problem, with many of its important features hidden from the top-level interface, thus discouraging user customization. Drawing from examples in custom modeling, numerical analysis, parallel computation, visualization, data management, and automated code generation, we show how a numerically scriptable, modular, and extensible analysis platform such as ISIS facilitates many forms of advanced astrophysical inquiry.Comment: Accepted by PASP, for July 2008 (15 pages
    • 

    corecore